Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T10:20:28.992Z Has data issue: false hasContentIssue false

Reduction of Secondary Defects in High Energy O-Implanted Si by High Energy Si Irradiation

Published online by Cambridge University Press:  25 February 2011

S. L. Ellingboe
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 2601, Australia
M. C. Ridgway
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 2601, Australia
Get access

Abstract

The effect of 4.2 MeV, low dose Si irradiation before annealing of 1 MeV, high dose O-implanted Si has been studied. Si irradiation results in differences in the defect structure both before and after high temperature annealing. With no Si irradiation, annealing results in polycrystalline Si (polySi) formation and microtwinning at the front SiO2/Si interface. With Si irradiation, the polySi volume fraction is greatly reduced after annealing, twinned Si having grown in its place. Si irradiation has no effect on Si inclusions within the SiO2 layer. The dependence of secondary defect formation on Si dose and implant temperature is presented. In particular, Si irradiation at low implant temperatures (150°C) and moderate doses (5×1016 cm−2) is shown to be most effective in the reduction of the polySi volume fraction at the front SiO2/Si interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mao, B. Y., Chen, C. E., Matloubian, M., Hite, L. R., Pollack, G., Hughes, H. L., Maley, K., IEEE Trans. Nucl. Sci. 33, 1702 (1986).Google Scholar
[2] Auberton-Herve, A. J., Giffard, B., Bruel, M., Proc. 1989 IEEE SOS/SOI Tech. Conf., 169 (1989).Google Scholar
[3] Hemment, P. L. F., Robinson, A. K., Reeson, K. J., Davis, J. R., Kilner, J. R., Chater, R. J., Stoemenos, J., Mat. Res. Soc. Proc. 107, 87 (1987).Google Scholar
[4] Auberton-Herve, A. J., Proc. on 4th Intl. Symp. on Si-on-Insulator Tech. and Dev., Ed. Schmidt, D. E., 455 (1990).Google Scholar
[5] Van Ommen, A. H., Mat. Res. Soc. Proc. 107, 43 (1988).Google Scholar
[6] Margail, J., Stoemenos, J., Jassaud, C., Bruel, M., Appl. Phys. Lett. 54, 526 (1989).Google Scholar
[7] Ellingboe, S. L., Ridgway, M. C., Schultz, P. J., J. Appl. Phys., in press (1992).Google Scholar
[8] Wang, Z., Zhang, B., Zhao, Q., Li, Q., Liefting, J.R., Schreutelkamp, R.J., Saris, F.W., J. Appl Phys. 71, 3780 (1992).Google Scholar
[9] Zeigler, J. F., Biersack, J. P. and Littmark, U., The Stopping Ranee of Ions in Solids (Pergamon, Oxford, 1985).Google Scholar
[10] White, A. E., Short, K. T., Pfeiffer, L. N., West, K. W., Batstone, J. L., Mat. Res. Soc. Proc. 74, 131 (1987).Google Scholar
[11] Kennedy, E. F., Csepregi, L., Mayer, J. W., Sigmon, T. W., J. Appl. Phys. 48, 4241 (1977).Google Scholar
[12] Olson, G. L., Roth, J. A., Mat. Sci. Rep. 3, 1 (1988).Google Scholar