Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T23:58:49.157Z Has data issue: false hasContentIssue false

Reciprocal Space X-Ray Mapping and Transmission Electron Microscopic Studies of Coincided δ-Inas and As-Cluster Superlattices in Gaas Films Grown by Molecular-Beam Epitaxy at Low Temperature

Published online by Cambridge University Press:  10 February 2011

V. V. Chaldyshev
Affiliation:
A.F.Ioffe Physical-Technical Institute, 194021, St.Petersburg, Russia
N. A. Bert
Affiliation:
A.F.Ioffe Physical-Technical Institute, 194021, St.Petersburg, Russia
N. N. Faleev
Affiliation:
A.F.Ioffe Physical-Technical Institute, 194021, St.Petersburg, Russia
Yu. G. Musikhin
Affiliation:
A.F.Ioffe Physical-Technical Institute, 194021, St.Petersburg, Russia
A. E. Kunitsyn
Affiliation:
A.F.Ioffe Physical-Technical Institute, 194021, St.Petersburg, Russia
V. V. Preobrazhenskii
Affiliation:
Institute of Semiconductor Physics, 630090, Novosibirsk, Russia.
M. A. Putyato
Affiliation:
Institute of Semiconductor Physics, 630090, Novosibirsk, Russia.
B. R. Semyagin
Affiliation:
Institute of Semiconductor Physics, 630090, Novosibirsk, Russia.
P. Werner
Affiliation:
Max-Planck-Institute of Microstructure Physics, Halle, Germany
Y. Takeda
Affiliation:
Nagoya University, 464-8603, Nagoya, Japan
Get access

Abstract

InAs/GaAs superlattices with thin (0.5–1 monolayer) δ-InAs insertions were grown by molecular beam epitaxy at low (150–200°C) temperature. The as-grown samples contained up to 1020 cm−3 arsenic antisite defects. Transmission electron microscopic study revealed no extended defect and showed that the real thickness of δ-InAs insertions is 3–4 monolayers. This thickness seems to be due to short-range roughness of the growth surface. Low diffuse scattering and extended interference picture were observed for such superlattices by x-ray diffraction study. Superlattices of two-dimensional cluster sheets were produced by annealing of the δ-InAs/GaAs superlattices at 500–600°C. Precipitation of excess arsenic at InAs δ-layers was found to be accompanied by enhanced In-Ga intermixing, roughening the InAs δ-layers, and smoothing the x-ray interference picture. No evidence for any self-ordering in the system of nanoscale As clusters was revealed using x-ray mapping in reciprocal space.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kaminska, M., Liliental, Z.-Weber, Weber, E.R., George, T., Kortright, J.B., Smith, F.W., Tsaur, B.Y., and Calawa, A.R., Appl.Phys.Lett. 54, 1831(1989).Google Scholar
2.Melloch, M.R., Mahalingam, K., Otsuka, N., Woodall, J.M., and Warren, A.C.,J. Cryst.Growth 111, 39(1991).Google Scholar
3.Bert, N.A., Veinger, A.I., Vilisova, M.D., Goloshchapov, S.I., Ivonin, I.V., Kozyrev, S.V., Kunitsyn, A.E., Lavrentieva, L.G., Lubyshev, D.I., Preobrazhenskii, V.V., Semyagin, B.R., Tretyakov, V.V., Chaldyshev, V.V., and Yakubenya, M.P., Phys.Solid State 35, 1289(1993).Google Scholar
4.Cheng, T.M., Chang, C.V., Chin, A., Huang, M.F., and Huang, J.H., Appl. Phys. Lett. 64, 2517(1994).Google Scholar
5.Bert, N.A., Chaldyshev, V.V., Lubyshev, D.I., Preobrazhenskii, V.V., and Semyagin, B.R., Semiconductors 29, 1170(1995).Google Scholar
6.Bert, N.A., Chaldyshev, V.V., Faleev, N.N., Kunitsyn, A.E., Lubyshev, D.I., Preobrazhenskii, V.V., Semyagin, B.R., and Tretyakov, V.V., Semicond. Sci. Technol. 12, 51(1997).Google Scholar
7.Chaldyshev, V.V., Bert, N.A., Kunitsyn, A.E., Musikhin, Yu.G., Preobrazhenskii, V.V., Putyato, M.A., Semyagin, B.R., Tretyakov, V.V., and Werner, P.. Semiconductors, 32, 1036(1998).Google Scholar
8. G. M. Martin. Appl. Phys. Lett., 39, 747(1981).Google Scholar
9.Bert, N.A., Musikhin, Yu.G., Preobrazhenskii, V.V., Putyato, M.A., Semyagin, B.R., Suvorova, A.A., Chaldyshev, V.V., Faleev, N.N., and Werner, P., Semiconductors 32, 683(1998).Google Scholar
10.Bert, N.A., Chaldyshev, V.V., Musikhin, Yu.G., Suvorova, A.A., Preobrazhenskii, V.V., Putyato, M.A., Semyagin, B.R., and Werner, P., Appl. Phys. Lett. 74, 1442(1999).Google Scholar
11.Chaldyshev, V.V., Bert, N.A., Preobrazhenskii, V.V., Putyato, M.A., and Semyagin, B.R.. Materials Sci. Eng. A, 238, 148(1997).Google Scholar
12.Faleev, N.N., Chaldyshev, V.V., Kunitsyn, A.E., Preobrazhenskii, V.V., Putyato, M.A., Semyagin, B.R., and Tretyakov, V.V., Semiconductors 32, 24(1998).Google Scholar