Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T13:15:54.288Z Has data issue: false hasContentIssue false

Reaction-Diffusion Model for the A + A → O Reaction

Published online by Cambridge University Press:  15 February 2011

Katja Lindenberg
Affiliation:
Department of Chemistry and Biochemistry and Institute for Nonlinear Science, University of California at San Diego. La Jolla, CA 92093–0340
Raoul Kopelman
Affiliation:
Departments of Chemistry and Physics, The University of Michigan, Ann Arbor, MI 48109
Panos Argyrakis
Affiliation:
Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109 and Department of Physics, University of Thessaloniki, GR-54006 Thessaloniki, Greece
Get access

Abstract

We formulate an approach to the A + A → products reaction based on a reaction-diffusion model. We construct the first equations in a moment hierarchy whose first two members are the global density of A particles and the pair correlation function. We terminate the hierarchy by relating the three-particle correlation function to two-particle correlation functions and thereby obtain a set of coupled equations that turns out to be linear and hence analytically tractable.

This approach leads naturally to the proportionality of the rate of the reaction to the pair correlation function evaluated at r=a, where a is the diameter of the reacting particles. It also confirms the relation between anomalous kinetics and the deviation of the pair correlation function from that associated with a random distribution of particles.

Numerical simulations in one and two dimensions that support our theory are presented in a companion paper in this session.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bramson, M. and Griffeath, D. Z., Wahrscheinlichskeitstheorie Gebiete 53, 183 (1980); Annals of Probability 8, 183 (1980).Google Scholar
2. Klymko, P. W. and Kopelman, R., J. Lumin. 24/25, 457 (1981); J. Phys. Chem. 86, 3686 (1982).Google Scholar
3. Klymko, P. W. and Kopelman, R., J. Phys. Chem. 87, 4565 (1983).Google Scholar
4. Torney, D. C. and McConnell, H. M., J. Phys. Chem. 87, 1441 (1983); Proc. Roy. Soc. London A 387, 147 (1983); D. C. Torney, J. Chem. Phys. 79, 3606 (1983).Google Scholar
5. Keizer, J., J. Chem. Phys. 79, 4877 (1983); R. Kopelman, J. Hoshen, J. S. Newhouse, and P. Argyrakis, J. Stat. Phys. 30, 335 (1983); A. Blumen, J. Klafter, and G. Zumofen, Phys. Rev. B 27, 3429 (1983); P. G. de Gennes, Chem. R. Acad. Sci. Paris 296, 881 (1983); P. Evesque, J. Phys. 44, 1217 1983; P. Evesque and J. Duran, J. Chem. Phys. 80, 3016 1984; K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984); R. Kopelman, P. W. Klymko, J. S. Newhouse, and L. Anacker, Phys. Rev. B 29, (1984); P. Meakin and H. E. Stanley, J. Phys. A 173, L17 (1984); L. W. Anacker, R. Kopelman, and J. S. Newhouse, J. Stat. Phys. 36, 591 (1984); J. S. Newhouse, P. Argyrakis, and R. Kopelman, Chem. Phys. Lett. 107, 48 (1984); K. Kang, P. Meakin, J. H. Oh, and S. Redner, J. Phys. A 17, L665 (1984).Google Scholar
6. Elyutin, P. V., J. Phys. C 17, 1867 (1984).Google Scholar
7. Anacker, L. W. and Kopelman, R., J. Chem. Phys. 81, 6402 (1984); L. W. Anacker, R. P. Parson, and R. Kopelman, J. Phys. Chem. 89, 4785 (1985).Google Scholar
8. Racz, Z., Phys. Rev. Lett. 55, 1707 (1985).Google Scholar
9. Kang, K. and Redner, S., Phys. Rev. A 32, 435 (1985); Y. Elskens and H. L. Frish, Phys. Rev. A 31, 3812 (1985); J. S. Newhouse and R. Kopelman, Phys. Rev. B 31, 1677 (1985); R. Kopelman, J. de Physique C 7, 9, 1985; G. Zumofen, A. Blumen, and J. Klafter, J. Chem. Phys. 82, 3198 (1985); D. Ben-Avraham and S. Redner, Phys. Rev. A 34, 501 (1986); J. S. Newhouse and R. Kopelman, J. Chem. Phys. 85, 6804 (1986); R. Kopelman, S. Parus, and J. Prasad, Phys. Rev. Lett. 56, 1742 (1986); R. Kopelman, J. Stat. Phys. 42, 185 (1986); L. Peliti, J. Phys. A 19, L365 (1986); D. Ben- Avraham, J. Stat. Phys. 48, 315 (1987); A. A. Lushnikov, Phys. Lett. A 120, 135 (1987); S. Redner, D. Ben-Avraham, and B. Kahng, J. Phys. A 20, 1231 (1987).Google Scholar
10. Kopelman, R., Philos. Mag. B 56, 717 (1987); J. Prasad and R. Kopelman, J. Phys. Chem. 91, 265 (1987); Phys. Rev. Lett. 59, 2103 (1987).Google Scholar
11. Argykaris, P. and Kopelman, R., J. Phys. Chem. 91, 2699 (1987); L. Li and R. Kopelman, J. Lumin. 40/41, 688 (1988).Google Scholar
12. Peacock-López, E. and Keizer, J., J. Chem. Phys. 88, 1997 (1988).Google Scholar
13. Balding, D., Clifford, P., and Green, N. J. B., Phys. Lett. A 126, 481 (1988).Google Scholar
14. Kanno, S., Prog. Theoret. Phys. 79, 1330 (1988).Google Scholar
15. Spouge, J. L., Phys. Rev. Lett. 60, 871 (1988); Prog. Theoret. Phys 1885.Google Scholar
16. Kuzovkov, V. and Kotomin, E., Rep. Prog. Phys. 51, 1479 (1988).Google Scholar
17. Find the right onesGoogle Scholar
18. Doering, C. R. and Ben-Avraham, D., Phys. Rev. A 38, 3035 (1988); Phys. Rev. Lett. 62, 2563 (1989).Google Scholar
19. Blumen, A., Zumofen, G., and Klafter, J., in Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, eds. Amann, A. et al. (Kluwer, New York, 1989) p. 21.Google Scholar
20. Kopelman, R., Science 41, 1620 (1988).Google Scholar
21. Kopelman, R., Parus, S. J., and Prasad, J., in Excited State Relaxation and Transport Phenomena in Solids, eds. Skinner, J. L. and Fayer, M. D., special issue of Chem. Phys. 128, 209 (1988); Z. Cheng, S. Redner, and F. Leyvraz, Phys. Rev. Lett. 62, 2321 (1989); R. Kopelman, S. J. Parus, and Z-Y. Shi, in Dynamical Processes in Condensed Molecular Systems, eds. J. Klafter, J. Jortner, and A. Blunmen (World Scientific, Singapore, 1989) p. 231; S. J. Parus and R. Kopelman, Phys. Rev. B 39, 889 (1989); S. J. Parus and R. Kopelman, Mol. Cryst. Liq. Cryst. 175, 119 (1989).Google Scholar
22. Argyrakis, P. and Kopelman, R., J. Phys. Chem. 93, 225 (1989).Google Scholar
23. Clement, E., Sander, L. M., and Kopelman, R., Phys. Rev. A 39, 6472 (1989).Google Scholar
24. Prasad, J. and Kopelman, R., Chem. Phys. Lett. 157, 535 (1989); L. A. Harmon and R. Kopelman, J. Phys. Chem. 94, 3454 (1990); P. Argyrakis and R. Kopelman, Phys. Rev. A 41, 2114 (1990); J. Prasad and R. Kopelman, J. Lumin. 45, 258 (1990); R. Kopelman, C. S. Li, and Z-Y. Shi, J. Lumin. 45,40 (1990).Google Scholar
25. Kopelman, R., Anacker, L. W., Clement, E., Li, L., and Sander, L., J. Lumin 45, 323 (1990).Google Scholar
26. Parus, S. J. and Kopelman, R., J. Lumin. 45, 43 (1990); Z-Y. Shi and R. Kopelman, J. Lumin. 45, 275 (1990); R.Kopelman, in Dynamical Processes in Condensed Molecular Systems, eds. Blumen, A., J. Klafter, and D. Haarer (World Scientific, Singapore, 1990) p. 173; T. Ohtsuki, Phys. Rev. A 43, 6917 (1991).Google Scholar
27. Privman, V., J. Stat. Phys. 69, 629 (1992).Google Scholar
28. Li, L. and Kopelman, R., J. Phys. Chem. 96, 8079 (1992); Z-Y. Shi and R. Kopelman, Chem. Phys. 167, 149 (1992); P. Argyrakis and R. Kopelman, Phys. Rev. A 45, 5814 (1992).Google Scholar
29. Shi, Z-Y. and Kopelman, R., in Dynamics in Small Confining Systems, eds. Drake, J. M., Klafter, J., Kopelman, R., and Awshalom, D. D., MRS Symposium Proceedings 290, 279 (1993).Google Scholar
30. Argyrakis, P. and Kopelman, R., Phys. Rev. A 41, 2114 (1990); Dynamics in Small Confining Systems 2121.Google Scholar
31. Lindenberg, K., West, B. J., and Kopelman, R., in Noise and Chaos in Nonlinear Dynamical Systems, eds. Capelin, S. and Moss, F. (Cambridge University Press, 1989) and references therein; K. Lindenberg, B. J. West, and R. Kopelman, Phys. Rev. A 42, 890 (1990); K. Lindenberg, B. J. West, and R. Kopelman, Phys. Rev. Lett. 60, 1777 (1988).Google Scholar
32. von Smoluchowski, M., Z. Phys. Chem. 92, 129 (1917).Google Scholar
33. Lindenberg, K., Argyrakis, P., and Kopelman, R., to be published.Google Scholar
34. van Kampen, N. G., Int. J. Quant. Chem. 16, 101 (1982).Google Scholar
35. Argyrakis, P. et al., companion paper.Google Scholar