Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-09-01T14:08:15.906Z Has data issue: false hasContentIssue false

R-Curve Behavior of SiC Whisker / Al2O3 Matrix Composites

Published online by Cambridge University Press:  21 February 2011

Joseph Homeny
Affiliation:
University of Illinois, Department of Materials Science and Engineering – Ceramics Division, 105 South Goodwin Avenue, Urbana, IL 61801
Christophe Mangin
Affiliation:
University of Illinois, Department of Materials Science and Engineering – Ceramics Division, 105 South Goodwin Avenue, Urbana, IL 61801
Get access

Abstract

The R-curve behavior of SiC whisker / Al2O3 matrix composites was evaluated. Composites were fabricated with Silar SC-9 and Tateho SCW-1-S SiC whiskers. The properties of the two SiC whiskers were similar in all aspects, except for significant differences in surface chemistry. These differences were found to be a key factor in determining the R-curve behavior

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Faber, K. T. and Evans, A. G., Acta. Metall. 31, 565 (1983).Google Scholar
2. Faber, K. T. and Evans, A. G., Acta. Metall. 31, 577 (1983).Google Scholar
3. Rice, R. W., Ceram. Eng. and Sci. Proc. 2, 661 (1981).Google Scholar
4. Rice, R. W., Ceram. Eng. and Sci. Proc. 6, 589 (1985).Google Scholar
5. Rice, R. W., Chem. Tech. 4, 230 (1983).Google Scholar
6. Shetty, D. K., Current Awareness Bulletin, Metals and Ceramics Information Center, Battelle Columbus Laboratories 118 (1982).Google Scholar
7. Kelly, A., Proc. Roy. Soc. Lond. A 319, 95 (1970).Google Scholar
8. Jenkins, M. G., Kobayashi, A. S., White, K. W., and Bradt, R. C., J. Am. Ceram. Soc 70, 393 (1987).Google Scholar
9. Piggot, M. R., J. Mater. Sci. 5, 669 (1970).Google Scholar
10. Lewis, D. III, in Processing of Advanced Ceramics, edited by Moya, J. S. and Aza, S. D. (Sociedad Espanola de Ceramica Y Vidro, Madrid, Spain, 1987) pp. 4972.Google Scholar
11. Homeny, J. and Vaughn, W. L., Mat. Res. Soc. Bull.7, 66 (1987).Google Scholar
12. Homeny, J., Vaughn, W. L., and Ferber, M. K., J. Am. Ceram. Soc., accepted for publication.Google Scholar
13. Becher, P. F., Tiegs, T. N., Ogle, J. C., and Warwick, W. H., in Fracture Mechanics of Ceramics. Vol.7: Composites. Impact. Statistics. and High-Temperature Phenomena, edited by Bradt, R. C., Hasselman, D. P. H., Evans, A. G., and Lange, F. F. (Plenum, New York, NY, 1986) pp. 6173.Google Scholar
14. Homeny, J., Vaughn, W. L., and Ferber, M. K., Am. Cer. Soc. Bull. 66 333 (1987).Google Scholar
15. Munz, D., Bubsey, R. T., and Srawley, J. E., Int. J. of Frac. 16, 359 (1980).Google Scholar
16. Sakai, M. and Yamasaki, K. K., J. Am. Ceram. Soc. 66, 371 (1983).Google Scholar
17. Jenkins, M. G., Kobayashi, A. S., White, K. W., and Bradt, R. C., Eng. Frac. Mech. 30, 505 (1988).Google Scholar
18. Munz, D., Bubsey, R. T., and Shannon, J. L. Jr, J. Am. Ceram. Soc. 63, 300 (1980).Google Scholar
19. Cottrell, A. H., The Mechanical Properties of Matter (Krieger, Huntington, NY, 1981) pp. 124130.Google Scholar
20. Sakai, M. and Yamasaki, K., J. Am. Ceram. Soc. 66, 376 (1983).Google Scholar