Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6f8dk Total loading time: 0.356 Render date: 2021-03-07T06:47:13.769Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Rare-earth doped Si nanostructures for Microphotonics

Published online by Cambridge University Press:  15 March 2011

D. Pacifici
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
G. Franzò
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
F. Iacona
Affiliation:
CNR-IMM, Sezione di Catania, Stradale Primosole 50, I-95121 Catania, Italy
A. Irrera
Affiliation:
CNR-IMM, Sezione di Catania, Stradale Primosole 50, I-95121 Catania, Italy
S. Boninelli
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
M. Miritello
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
F. Priolo
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
Get access

Abstract

In the present paper, we will review our work on rare-earth doped Si nanoclusters. The samples have been obtained by implanting the rare-earth (e.g. Er) in a film containing preformed Si nanocrystals. After the implant, samples have been treated at 900°C for 1h. This annealing temperature is not enough to re-crystallize all of the amorphized Si clusters. However, even if the Si nanoclusters are in the amorphous phase, they can still efficiently transfer the energy to nearby rare-earth ions. We developed a model for the Si nanoclusters-Er system, based on an energy level scheme taking into account the coupling between each Si nanocluster and the neighboring Er ions. By fitting the data, we were able to determine a value of 3×10−15 cm3 s−1 for the Si nanocluster-Er coupling coefficient. Moreover, a strong cooperative up-conversion mechanism between two excited Er ions and characterized by a coefficient of 7×10−17 cm3 s−1, is shown to be active in the system, demonstrating that more than one Er ion can be excited by the same nanocluster. We show that the overall light emission yield of the Er related luminescence can be enhanced by using higher concentrations of very small nanoaggregates. Eventually, electroluminescent devices based on rare-earth doped Si nanoclusters will be demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kenyon, A. J., Trwoga, P. F., Federighi, M., and Pitt, C. W., J. Phys.: Condens. Matter 6, L319 (1994).Google Scholar
2. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett. 71, 1198 (1997).CrossRefGoogle Scholar
3. Franzò, G., Vinciguerra, V., and Priolo, F., Appl. Phys. A: Mater. Sci. Process. 69, 3 (1999).Google Scholar
4. Priolo, F., Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Irrera, A., J. Appl. Phys. 89, 264 (2001).CrossRefGoogle Scholar
5. Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Priolo, F., Appl. Phys. Lett. 76, 2167 (2000).CrossRefGoogle Scholar
6. Kik, P. G., Brongersma, M. L., and Polman, A., Appl. Phys. Lett. 76, 2325 (2000).CrossRefGoogle Scholar
7. Seo, S. -Y., and Shin, J. H., Appl. Phys. Lett. 78, 2709 (2001).CrossRefGoogle Scholar
8. Watanabe, K., Fujii, M. and Hayashi, S., J. Appl. Phys. 90, 4761 (2001).CrossRefGoogle Scholar
9. Han, H. -S., Seo, S. -Y., Shin, J. H., and Park, N., Appl. Phys. Lett. 81, 3720 (2002)CrossRefGoogle Scholar
10. Iacona, F., Pacifici, D., Irrera, A., Miritello, M., Franzò, G., Priolo, F., Sanfilippo, D., Stefano, G. Di, and Fallica, P. G., Appl. Phys. Lett. 81, 3242 (2002)CrossRefGoogle Scholar
11. Pacifici, D., Franzò, G., Iacona, F., Negro, Luca Dal, and Priolo, F., Phys. Rev. B 67, 245301 (2003).CrossRefGoogle Scholar
12. Pacifici, D., Moreira, E.C., Franzò, G., Martorino, V., Iacona, F., and Priolo, F., Phys. Rev. B 65, 144109 (2002).CrossRefGoogle Scholar
13. Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 78, 3161 (1997).CrossRefGoogle Scholar
14. Kobitski, A.Yu., Zhuravlev, K. S., Wagner, H. P., and D. Zahn, R. T., Phys. Rev. B 63, 115423 (2001).CrossRefGoogle Scholar
15. Wölkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. and Delerue, C., Phys. Rev. Lett. 82, 197 (1999).CrossRefGoogle Scholar
16. Förster, T., Ann. Phys. (N.Y.) 2, 55 (1948).CrossRefGoogle Scholar
17. Dexter, D.L., J. Chem. Phys. 21, 836 (1953).CrossRefGoogle Scholar
18. Kovalev, D., Gross, E., Künzner, N., Koch, F., Timoshenko, V. Yu., Fujii, M., Phys. Rev. Lett. 89, 137401 (2002).CrossRefGoogle Scholar
19. Jhe, J.-H., Shin, J. H., Kim, K.J., and Moon, D.W., Appl. Phys. Lett. 82, 4489 (2003).CrossRefGoogle Scholar
20. Fujii, M., Yoshida, M., Hayashi, S., and Yamamoto, K., J. Appl. Phys. 84, 4525 (1998).CrossRefGoogle Scholar
21. Shin, J. H., Kim, M.-J., Seo, S.-Y., and Lee, C., Appl. Phys. Lett. 72, 1092 (1998).CrossRefGoogle Scholar
22. Franzò, G., Irrera, A., Moreira, E.C., Miritello, M., Iacona, F., Sanfilippo, D., Stefano, G. Di, Fallica, P.G., and Priolo, F., Appl. Phys. A 74, 1 (2002).CrossRefGoogle Scholar
23. Iacona, F., Pacifici, D., Irrera, A., Miritello, M., Franzò, G., Priolo, F., Sanfilippo, D., Stefano, G. Di, and Fallica, P. G., Appl. Phys. Lett. 81, 3242 (2002).CrossRefGoogle Scholar
24. Irrera, A., Pacifici, D., Miritello, M., Franzò, G., Priolo, F., Iacona, F., Sanfilippo, D., Stefano, G. Di, and Fallica, P. G., Appl. Phys. Lett. 81, 1866 (2002).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rare-earth doped Si nanostructures for Microphotonics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Rare-earth doped Si nanostructures for Microphotonics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Rare-earth doped Si nanostructures for Microphotonics
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *