Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T17:20:19.430Z Has data issue: false hasContentIssue false

Rapid Diffusion of Molybdenum Trace Contamination in Silicon

Published online by Cambridge University Press:  21 February 2011

S. P. Tobin
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
A. C. Greenwald
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
R. G. Wolfson
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
D. L. Meier
Affiliation:
Westinghouse R&D Center, 1310 Beulah Road, Pittsburg, PA 15735
P. J. Drevinsky
Affiliation:
Rome Air Development Center, Solid State Sciences Division, Hanscom Air Force Base, MA 01731
Get access

Abstract

Molybdenum contamination has been detected in silicon epitaxial layers and substrate wafers after processing in any one of several epitaxial silicon reactors. Greatly reduced minority carrier diffusion lengths and lifetimes are consistent with Mo concentrations measured by DLTS in the 1012 and 1013 cm−3 ranges. Depth profiling of diffusion length and the Mo deep level show much greater penetration than expected from previous reports of Mo as a slow diffuser. The data indicate a lower limit of 10−8 cm2/sec for the diffusion coefficient of Mo in silicon at 1200°C, consistent with high diffusivities measured for other transition metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rohatgi, A., Hopkins, R. H., Davis, J. R., Campbell, R. B. and Mollenkopf, H. C., Solid-State Electronics 23, 1185 (1980).10.1016/0038-1101(80)90032-5CrossRefGoogle Scholar
2. Weber, E. R., Appl. Phys. A 30, 1 (1983).10.1007/BF00617708Google Scholar
3. Schmidt, P. F. and Pearce, C. W., J. Electrochem. Soc. 128, 630 (1981).10.1149/1.2127472Google Scholar
4. lies, P.A., Solar Cells 7, 79 (1982).Google Scholar
5. Analysis carried out by Northern Analytical Laboratory, Amherst, NH.Google Scholar
6. Stokes, E. D. and Chu, T. L., Appl. Phys. Lett. 30, 425 (1977).10.1063/1.89433CrossRefGoogle Scholar
7. Werkhoven, a. C. J., Aggregation Phenomena of Point Defects in Silicon, ed. Sirtl, E. and Goorissen, J. (The Electrochemical Society Softbound Proceedings Series, Pennington, NJ, 1983) p. 144. b. C. J. Werkhoven, C. W. T. Bulle-Lieuwma, B. J. H. Leunissen and M. P. A. Viegers, 3. Electrochem. Soc. 131, 1388 (1984).Google Scholar
8. Samata, S. and Matsushita, Y., Paper K-I at the 1984 Electronic Materials Conference, Santa Barbara, CA (unpublished).Google Scholar
9. Benton, J. L. and Kimerling, L. C., J. Electrochem. Soc. 129, 2098 (1982).10.1149/1.2124387CrossRefGoogle Scholar
10. Analysis done by Charles Evans and Associates, San Mateo, CA.Google Scholar
11. Milnes, A. G., Deep Impurities in Semiconductors (John Wiley & Sons, New York, 1973), p. 25.Google Scholar
12. Chen, J.-W. and Milnes, A. G., Ann. Rev. Mater. Sci. 1980 10, 157 (1980).10.1146/annurev.ms.10.080180.001105CrossRefGoogle Scholar
13. Sze, S. M., Physics of Semiconductor Devices (Wiley Interscience, New York, 1969) p. 31.Google Scholar
14. Diffusion and Defect Data 20, 60 (1979) (Os); Diffusion and Defect Data 13, 173 (1976) (Rh).Google Scholar