Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T10:06:33.505Z Has data issue: false hasContentIssue false

Raman Spectroscopy Investigation of (SiC)1-x (Ain)x, Layers Formed by Ion Implantation in 6H-SiC

Published online by Cambridge University Press:  15 February 2011

D. R. T. Zahn
Affiliation:
TU Chemnitz-Zwickau, Professur fur Halbleiterphysik, D-09107 Chemnitz, Germany, werni@physikus.physik.tu-chemnitz.de
T. Werninghaus
Affiliation:
TU Chemnitz-Zwickau, Professur fur Halbleiterphysik, D-09107 Chemnitz, Germany, werni@physikus.physik.tu-chemnitz.de
M. Thümer
Affiliation:
TU Chemnitz-Zwickau, Professur fur Halbleiterphysik, D-09107 Chemnitz, Germany, werni@physikus.physik.tu-chemnitz.de
J. Pezoldt
Affiliation:
TU Ilmenau, Institut fur Festkörperelektronik, D-98684 Ilmenau, Germany
V. Heera
Affiliation:
FRZ Rossendorf e.V., Institut fur lonenstrahlphysik und Materialforschung, D-0 1314 Dresden, Germany
Get access

Abstract

6H silicon carbide (SiC) substrates were implanted with nitrogen and aluminum at different doses and annealed in the temperature range from 1300°C-1700°C. Micro-Raman Spectroscopy (μ-RS) measurements were performed in two sample geometries (conventional plane-view and cross-sectional). Changes of the polytype from 6H- to a cubic (SiC)1-xAIN)x, and influences in the 6H-SiC wafer up to depths of 2μm were detected. The results obtained by crosssectional μ-RS are discussed in comparison to other results from Reflection High Electron Energy Diffraction (RHEED), Rutherford Backscattering (RBS), Auger Electron Spectroscopy (AES), Transmission Electron Microscopy (TEM), and Positron Annihilation Spectroscopy (PAS) measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morkoc, H., Strite, S., Bao, G.B., Lin, M.E., Sverdlov, B., and Bums, M., J. Appl. Phys. 76, 1363 (1994)Google Scholar
2. Feng, Z.C., Mascarenhas, A.J., Choyke, W.J., and Powell, J.A., J. Appl. Phys. 64, 3176 (1988)Google Scholar
3. Feldman, D.W., Parker, J.H., Jr., Choyke, W.J., and Patrick, L., Phys. Rev. 173, 787 (1968)Google Scholar
4. Werninghaus, T., Laufer, S., Hinneberg, H.-J., and Zahn, D.R.T., in Diamond Materials IV, K.V., Ravi and J.P., Dismukes (Eds.) Electrochem. Soc. Proc. 4, Pennington, NJ, (1995) p. 151 Google Scholar
5. Werninghaus, T., Friedrich, M., and Zahn, D.R.T., physica status solidi (a) 154, 269 (1996)Google Scholar
6. Heera, V., Pezoldt, J., Xing, X.J., and Piroux, P., Proc. of ICSCRM-95, Kyoto, Japan, to be publishedGoogle Scholar
7. Fagen, E.A. in Silicon Carbide, Marshall, R.C., Faust, J.W. Jr.,, Ryan, C.E. (Eds.) Univ. of South Carolina, Columbia, (1974), p. 476 Google Scholar
8. Sasaki, Y., Nishina, Y., Sato, M., and Okamura, K., Phys. Rev. B40, 1762 (1989)Google Scholar
9. Heera, V., Stoemenos, J., Kögler, R., and Skorupa, W., J. Appl. Phys. 77, 2999 (1995)Google Scholar
10. Pezoldt, J., Kalnin, A.A., Moskwina, D.R., and Savelyev, W.D., Nucl. Instr. and Meth. B80/81, 943 (1993)Google Scholar
11..Pezoldt, J., Kalnin, A.A., and Savelyev, W.D., Nucl. Instr. and Meth. B65, 361 (1992)Google Scholar
12. Pacaud, Y., Skorupa, W., Perez-Rodriguez, A., Brauer, G., Stoemenos, J., and Barklie, R.C., to be published in Nucl. Instr. and Meth. B (1995)Google Scholar