Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-06T11:52:52.886Z Has data issue: false hasContentIssue false

Raman Mapping and Finite Element Analysis of Epitaxial Lateral Overgrown GaN on Sapphire Substrates

Published online by Cambridge University Press:  11 February 2011

M. Benyoucef
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.
M. Kuball
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.
B. Beaumont
Affiliation:
Centre de Recherches sur l'Hétéroépitaxie et ses Applications (CRHEA-CNRS), Rue Bernard Grégory, Parc Sophia Antipolis, 06560 Valbonne, France.
V. Bousquet
Affiliation:
Centre de Recherches sur l'Hétéroépitaxie et ses Applications (CRHEA-CNRS), Rue Bernard Grégory, Parc Sophia Antipolis, 06560 Valbonne, France.
P. Gibart
Affiliation:
Centre de Recherches sur l'Hétéroépitaxie et ses Applications (CRHEA-CNRS), Rue Bernard Grégory, Parc Sophia Antipolis, 06560 Valbonne, France.
Get access

Abstract

Using micro-Raman scattering and finite element (FE) analysis, stress fields in epitaxial lateral overgrown (ELO) GaN fabricated by metalorganic vapor phase epitaxy (MOVPE) on sapphire substrates using a two-step growth method were investigated. Nearly full stress relaxation at the top ELO GaN surface can be achieved by increasing the thickness of ELO GaN to about 50 μm. Reductions in stress variation between window and overgrown regions can be achieved by using a double ELO GaN growth at a much smaller ELO thickness. Increased compressive stress at the coalescence boundary of two adjacent wings of ELO GaN was related to the presence of voids in this area. In the double ELO growth, stress near the top surface was mainly attributed to the presence of voids on top of the upper dielectric mask.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zheleva, T. S., Nam, O. -H., Ashmawi, W. M., Griffin, J. D., Davis, R. F., J. Cryst. Growth. 222, 706 (2001).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Matushita, T., and Mukai, T., MRS Internet J. Nitride Semicond. 4S1, G1.1 (1999).Google Scholar
3. Marchand, H., Wu, X. H., Ibbetson, J. P., Fini, P. T., Kozodoy, P., Keller, S., Speck, J. S., DenBaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 73, 747 (1998).Google Scholar
4. Nam, O. -H., Bremser, M. D., Zheleva, T. S., and Davis, R. F., Appl. Phys. Lett. 71, 2638 (1997).Google Scholar
5. Kapolnek, D., Keller, S., Vetury, R., Underwood, R. D., Kozodoy, P., Denbaars, S.P., and Mishra, U. K., Appl. Phys. Lett. 71, 1204 (1997).Google Scholar
6. Usui, A., Sunakawa, H., Sakai, A., and Yamaguchi, A. A., Jpn. J. Appl. Phys., Part 2 36, L899 (1997).Google Scholar
7. Sakai, A., Sunakawa, H., and Usui, A., Appl. Phys. Lett. 71, 2259 (1997).Google Scholar
8. Vennéguès, P., Beaumont, B., Bousquet, V., Vaille, M., and Gibart, P., J. Appl. Phys. 87, 4175 (2000).Google Scholar
9. Demangeot, F., Frandon, J., Renucci, M. A., Briot, O., Gil, B., and Aulombard, R. L., Solid State Commun. 100, 207 (1996).Google Scholar
10. ABAQUS Standard V.6.0, Hibbitt, Karlsson & Sorensen Inc., 1080 Main Street, Pawtucket, R.I. 02860, U.S.A.Google Scholar
11. Benyoucef, M., Kuball, M., Hill, G., Wisnom, M., Beaumont, B., and Gibart, P., Appl. Phys. Lett. 79, 4127 (2001).Google Scholar
12. Benyoucef, M., Kuball, M., Beaumont, B., and Gibart, P., Appl. Phys. Lett. 80, 2275 (2002).Google Scholar