Hostname: page-component-cd4964975-8tfrx Total loading time: 0 Render date: 2023-03-29T07:57:13.646Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Quantum Dot Long-Wavelength Detectors

Published online by Cambridge University Press:  21 March 2011

Pallab Bhattacharya
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI 48109-2122, U.S.A.
Adrienne D. Stiff-Roberts
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI 48109-2122, U.S.A.
Sanjay Krishna
Center for High Technology Materials, Department of Electrical Engineering and Computer Engineering, University of New Mexico Albuquerque, NM 87106, U.S.A.
Steve Kennerly
Sensors and Electron Devices Directorate, U. S. Army Research Laboratory Adelphi, MD 20783, U.S.A.
Get access


Long-wavelength infrared detectors operating at elevated temperatures are critical for imaging applications. InAs/GaAs quantum dots are an important material for the design and fabrication of high-temperature infrared photodetectors. Quantum dot infrared photodetectors allow normal-incidence operation, in addition to low dark currents and multispectral response. The long intersubband relaxation time of electrons in quantum dots improves the responsivity of the detectors, contributing to better hightemperature performance. We have obtained extremely low dark currents (Idark = 1.7 pA, T = 100 K, Vbias = 0.1 V), high detectivities (D* = 2.9×108cmHz1/2/W, T = 100 K, Vbias = 0.2 V), and high operating temperatures (T = 150 K) for these quantum-dot detectors. These results, as well as infrared imaging with QDIPs, will be described and discussed.

Research Article
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Berryman, K. W., Lyon, S. A., and Segev, M., “Mid-infrared photoconductivity in InAs quantum dotsAppl. Phys. Lett., 70, pp. 18611863, 1997.CrossRefGoogle Scholar
2. Phillips, J., Kamath, K., and Bhattacharya, P., “Far-infrared photoconductivity in self-organized InAs quantum dotsAppl. Phys. Lett., 72, pp. 20202022, 1998.CrossRefGoogle Scholar
3. Kim, S., Mohseni, H., Erdtmann, M., Michel, E., Jelen, C., and Razeghi, M., “Growth and characterization of InGaAs/InGaP quantum dots for mid-infrared photoconductive detectorAppl. Phys. Lett., 73, pp. 963965, 1998.CrossRefGoogle Scholar
4. Maimon, S., Finkman, E., and Bahir, G., “Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectorsAppl. Phys. Lett., 73, pp. 20032005, 1998.CrossRefGoogle Scholar
5. Pan, D., Towe, E., and Kennerly, S., “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectorsAppl. Phys. Lett., 73, pp. 19371939, 1998.CrossRefGoogle Scholar
6. Xu, S. J., Chua, S. J., Mei, T., Wang, X. C., Zhang, X. H., Karunasiri, G., Fan, W. J., Wang, C. H., Jiang, J., Wang, S., and Xie, X. G., “Characteristics of InGaAs quantum dot infrared photodetectorsAppl. Phys. Lett., 73, pp. 31533155, 1998.CrossRefGoogle Scholar
7. Zhuang, Q. D., Li, J. M., Li, H. X., Zeng, Y. P., Pan, L., Chen, Y. H., Kong, M. Y., and Lin, L. Y., “Intraband absorption in the 8–12 ?mu;m band from Si-doped vertically aligned InGaAs/GaAs quantum-dot superlatticeAppl. Phys. Lett., 73, pp. 37063708, 1998.CrossRefGoogle Scholar
8. Weber, A., Gauthier-Lafaye, O., Julien, F.H., Brault, J., Gendry, M., Désieres, Y., and Benyattou, T., “Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001)Appl. Phys. Lett., 74, pp. 413415, 1999.CrossRefGoogle Scholar
9. Phillips, J., Bhattacharya, P., Kennerly, S. W., Beekman, D. W., and Dutta, M., “Self-Assembled InAs-GaAs Quantum-Dot Intersubband DetectorsIEEE J. Quantum Electron., 35, pp. 936943, 1999.CrossRefGoogle Scholar
10. Chu, L., Zrenner, A., Böhm, G., and Abstreiter, G., “Normal-incident intersubband photocurrent spectroscopy on InAs/GaAs quantum dotsAppl. Phys. Lett., 75, pp. 35993601, 1999.CrossRefGoogle Scholar
11. Pan, D., Towe, E., and Kennerly, S., “Photovoltaic quantum-dot infrared detectorsAppl. Phys. Lett., 76, pp. 33013303, 2000.CrossRefGoogle Scholar
12. Liu, H. C., Gao, M., McCafferey, J., Wasilewski, Z. R., and Fafard, S., “Quantum dot infrared photodetectorsAppl. Phys. Lett., 78, pp. 7981, 2001.CrossRefGoogle Scholar
13. Wang, Y., Lin, S. D., Wu, H. W., and Lee, C. P., “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layerAppl. Phys. Lett., 78, pp. 10231025, 2001.CrossRefGoogle Scholar
14. Rogalski, A., “Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arraysInfrared Phys. & Technol., 40, pp. 279294, 1999.CrossRefGoogle Scholar
15. Rogalski, A., Infrared Detectors, pp. 155650, Gordon and Breach Science Publishers, Australia, 2000.CrossRefGoogle Scholar
16. Levine, B.F., “Quantum-well infrared photodetectorsJ. Appl. Phys., 74, pp. R1–R81, 1993.CrossRefGoogle Scholar
17. Gunapala, S. D. and Bandara, K. M. S. V., “Recent Developments in Quantum-Well Infrared PhotodetectorsThin Films, 21, pp. 113237, 1995.CrossRefGoogle Scholar
18. Singh, J., “Possibility of room temperature intra-band lasing in quantum dot structures placed in high-photon density cavitiesIEEE Photon. Technol. Lett., 8, pp. 488490, 1996.CrossRefGoogle Scholar
19. Klotzkin, D., Kamath, K., and Bhattacharya, P., “Quantum capture times at room temperature in high-speed In0.4Ga0.6As-GaAs self-organized quantum-dot lasersIEEE Photon. Technol. Lett., 9, pp. 13011303, 1997.CrossRefGoogle Scholar
20. Urayama, J., Norris, T. B., Singh, J., and Bhattacharya, P., “Temperature dependent carrier dynamics in InGaAs self-assembled quantum dotsPhys. Rev. Lett., 86, pp. 4930–, 2001.CrossRefGoogle Scholar
21. Klotzkin, D. and Bhattacharya, P., “Temperature dependence of dynamic and dc characteristics of quantum dot and quantum well lasers: A comparative studyIEEE J. of Lightwave Technol., 17, pp.1634–, 1999.CrossRefGoogle Scholar
22. Sosnowski, T., Norris, T., Jiang, H., Singh, J., Kamath, K., and Bhattacharya, P., “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopyPhys. Rev. B-Condensed Matter, 57, pp. R9423–, 1998.CrossRefGoogle Scholar
23. Mukai, K., Ohtsuka, N., Shoji, H., and Sugawara, M., “Emission from discrete levels in self-formed InGaAs/GaAs quantum dots by electric carrier injection: influence of phonon bottleneckAppl. Phys. Lett., 68, pp. 3013–, 1996.CrossRefGoogle Scholar
24. Stiff, A. D., Krishna, S., Bhattacharya, P., and Kennerly, S., “High-detectivity, normal-incidence, mid-infrared (∼4 μm) InAs/GaAs quantum-dot detector operating at 150 KAppl. Phys. Lett., 79, pp. 421423, 2001.CrossRefGoogle Scholar
25. Stiff, A. D., Krishna, S., Bhattacharya, P., and Kennerly, S., “Normal-Incidence, High-Temperature, Mid-Infrared, InAs/GaAs Vertical Quantum-Dot Infrared PhotodetectorIEEE J. of Quant. Electron., 37, pp. 14121419, 2001.CrossRefGoogle Scholar