Skip to main content Accessibility help
×
Home

Quantum Confined Electron-Hole States in ZnSe Quantum Dots

Published online by Cambridge University Press:  10 February 2011


H. W. H. Lee
Affiliation:
Lawrence Livermore National Laboratory, P. 0. Box 808, Livermore, CA 94551, hwhlee@llnl.gov
C. A. Smith
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616
V. J. Leppert
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616
S. H. Risbud
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616
Corresponding
E-mail address:

Abstract

We observed the quantum confined bandedge emission from ZnSe quantum dots and the size dependence of the energy states, spin-orbit interaction, and Stokes shift. The bandedge emission occurs in the UV-blue. The energy gap = Eg + C/dn where d is the diameter and n is 1. 19 ± 0.13 and 1.21 ± 0.13 for the first and second electron-hole transitions, respectively. The separation between these transitions approaches the bulk spin-orbit splitting, while the Stokes shift decreases with particle size. Effective mass theories can not explain these results. Trap emission is observed in some samples in the green and red, resulting from Se-related traps.


Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Gunshor, R. L. and Nurmikko, A. V., MRS Bulletin, XX 15 (1995).10.1557/S088376940003712XCrossRefGoogle Scholar
2. Haase, M. A., Qui, J., Depuydt, J. M., and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).10.1063/1.105472CrossRefGoogle Scholar
3. Jeon, H., Ding, J., Patterson, W., Nurmikko, A.,. Xie, W., Grillo, D., Kobayashi, M., and Gunshor, R. L., Appl. Phys. Lett. 59, 3619 (1991).10.1063/1.105625CrossRefGoogle Scholar
4. Nakamura, S., Advanced Materials 8, 689(1996).10.1002/adma.19960080821CrossRefGoogle Scholar
5. Leppert, V. J., Risbud, S. H., and Fendorf, M., Phil. Mag. Lett. 75, 29(1997).10.1080/095008397179886CrossRefGoogle Scholar
6. Li, G. and Nogami, M., J. Appl. Phys. 75, 4276 (1994).10.1063/1.355970CrossRefGoogle Scholar
7. Chestnoy, N., Hull, R., and Brus, L. E., J. Chem. Phys. 85, 2237(1986); L. E. Brus, IEEE J. Quantum Electronics QE-22, 1909(1986).10.1063/1.451119CrossRefGoogle Scholar
8. Smith, C. A., Risbud, S. H., Lee, H. W. H., and Cooke, J. Diane, Materials Research Society Symposium Proceedings 424, 501(1996).10.1557/PROC-424-501CrossRefGoogle Scholar
9. Smith, C. A., Risbud, S. H., Cooke, J. D., and Lee, H. W. H., Proceedings of the Optical Society of America Spring Topical Meeting, Incline Village, NV, March 17–21, 1997; C. A. Smith, H. W. H. Lee, and S. H. Risbud, Appl. Phys. Lett., to be submitted.Google Scholar
10. Fu, H. and Zunger, A., Phys. Rev. B 56, 1496(1997).10.1103/PhysRevB.56.1496CrossRefGoogle Scholar
11. Fu, H. and Zunger, A., Phys. Rev. B 55, 1642(1997); L. W. Wang and A. Zunger, Phys. Rev. B 51, 17398(1995); C. Dellerue, G. Allan, M. Lannoo, Phys. Rev. B. 48,11024 (1993); H. W. H. Lee, P. A. Thielen, G. R. Delgado, S. M. Kauzlarich, R. A. Bley, C. S. Yang, and D. Mayeri Science, submitted.10.1103/PhysRevB.55.1642CrossRefGoogle Scholar
12. Woggon, U., 0. Wind, Gindele, F., Tsitsishvili, E., and Muller, M., J. Lumin. 70, 2692890 (1996).10.1016/0022-2313(96)00060-9CrossRefGoogle Scholar
13. Banyai, L. and Koch, S. W., Semiconductor Quantum Dots, Series on Atomic, Molecular, and Optical Physics Vol.2, World Scientific, Singapore.Google Scholar
14. Nirmal, M., Norris, D. J., Kuno, M., Bawendi, M. G., Al. Efros, L., and Rosen, M., Phys. Rev. Lett. 75, 3728(1995); D. J. Norris and M. G. Bawendi, J. Chem. Phys. 103, 5260(1995); H. Fu and A. Zunger, Phys. Rev. B 55, 1642(1997).10.1103/PhysRevLett.75.3728CrossRefGoogle Scholar
15. Su, Z., Rodrigues, P. A. M., Yu, P. Y., and Risbud, S. H., J. Appl. Phys. 80, 1054(1996).10.1063/1.362840CrossRefGoogle Scholar
16. Jeon, D.Y., Gislason, H. P., and Watklos, G. D., Phys. Rev. B 48, 7872(1993).10.1103/PhysRevB.48.7872CrossRefGoogle Scholar
17. Brus, L. E., J. Chem. Phys. 80,4403(1984).10.1063/1.447218CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 2 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-pwkpp Total loading time: 0.294 Render date: 2020-12-04T23:50:37.640Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Dec 04 2020 23:00:11 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantum Confined Electron-Hole States in ZnSe Quantum Dots
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quantum Confined Electron-Hole States in ZnSe Quantum Dots
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quantum Confined Electron-Hole States in ZnSe Quantum Dots
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *