Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-21T11:25:51.640Z Has data issue: false hasContentIssue false

Pyramid Formation and Coarsening During Homoepitaxial Growth

Published online by Cambridge University Press:  21 February 2011

Martin Siegert*
Affiliation:
Department of Physics, Simon Fraser University Burnaby, British Columbia, Canada V5A 1S6
Get access

Abstract

One of the generic scenarios in molecular beam epitaxy is the growth of large scale pyramid-like three-dimensional structures. These structures are a consequence of non-equilibrium surface diffusion currents that result from a transport of adatoms in the uphill direction in regions of the surfaces that are tilted away from a high symmetry orientation. The microscopic origin of these currents are, e.g., diffusion barriers at step edges that suppress the diffusion of adatoms to lower terraces. The temporal evolution of the resulting instabilities can be described by simple continuum equations that display slope-selection, pyramid-like structures, and coarsening. We show that similar scenarios can be found in microscopic models investigated by Monte-Carlo simulations. However, crossover phenomena can complicate the comparison of the asymptotic theory with computer simulations or experiments. We therefore discuss criteria that allow to distinguish experimentally between kinetic roughening with exponents ζ ≃ 1 and unstable pyramid-like growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Krug, J., Plischke, M., and Siegert, M., Phys. Rev. Lett. 70, 3271 (1993).Google Scholar
2 Siegert, M. and Plischke, M., Phys. Rev. E 50, 917 (1994).Google Scholar
3 Edwards, S. F. and Wilkinson, D. R., Proc. Roy. Soc. (London) A 381, 17 (1982).Google Scholar
4 Villain, J., J. Phys. I (France) 1, 19 (1991).Google Scholar
5 Siegert, M. and Plischke, M., Phys. Rev. Lett. 68, 2035 (1992).Google Scholar
6 Johnson, M. D., Orme, C., Hunt, A. W., Graff, D., Sudijono, J., Sander, L. M., and Orr, B. G., Phys. Rev. Lett. 72, 116 (1994).Google Scholar
7 Siegert, M. and Plischke, M., Phys. Rev. Lett. 73, 1517 (1994).Google Scholar
8 Siegert, M. and Plischke, M., to be published in Phys. Rev. E, Jan. 1 (1996).Google Scholar
9 Ernst, H.-J., Fabre, F., Folkerts, R., and Lapujoulade, J., Phys. Rev. Lett. 72, 112 (1994); J. A. Stroscio, D. T. Pierce, M. Stiles, A. Zangwill and L. M. Sander,NIST preprint (1995); K. Thürmer,R. Koch, M. Weber and K. H. Rieder, Phys. Rev. Lett. 75, 1767 (1995).Google Scholar
10 Šmilauer, P. and Vvedensky, D. D., to be published in Phys. Rev. B. Google Scholar
11 Mullins, W. W., J. Appl. Phys. 28, 333 (1957); in Metal Surfaces: Structure, Energetics and Kinetics (Am. Soc. Metals, Metals Park, Ohio 1963), p. 17.Google Scholar
12 Ehrlich, G. and Hudda, F. G., J. Chem. Phys. 44, 1039 (1966); S. C. Wang and G. Ehrlich, Phys. Rev. Lett. 70, 41 (1993); R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966); R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969).Google Scholar
13 Duport, C., Nozières, P., and Villain, J., Phys. Rev. Lett. 74, 134 (1995); C. Duport, P. Politi and J. Villain, J. Phys. I (France) 5, 1317 (1995).Google Scholar
14 Siegert, M. in Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, edited by McKane, A. J., Droz, M., Vannimenus, J., and Wolf, D., NATO ASI Series B, Vol. 344 (Plenum, New York, 1995), pp. 165202.Google Scholar
15 Vvedensky, D. D., Zangwill, A., Luse, C. N., and Wilby, M. R., Phys. Rev. E 48, 852 (1993).Google Scholar
16 Evans, J. W., Sanders, D. E., Thiel, P. A., and DePristo, A. E., Phys. Rev. B 41, 5410 (1990); J. W. Evans, Phys. Rev. B 43, 3897 (1993).Google Scholar
17 Kellogg, G. L. and Feibelman, P. J., Phys. Rev. Lett. 64, 3143 (1990); G. L. Kellogg, Phys. Rev. Lett. 70, 1631 (1993).Google Scholar
18 Šmilauer, P., Wilby, M.R., and Vvedensky, D.D., Phys. Rev. B 47, 4119 (1993).Google Scholar