Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-05T08:21:17.917Z Has data issue: false hasContentIssue false

Pulsed Laser-Induced Melting of Intermediate Cu-Zn Phases

Published online by Cambridge University Press:  25 February 2011

David M. Follstaedt
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185
Paul S. Peercy
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185
John H. Perepezko
Affiliation:
Dept. Materials Science and Engineering, University of Wisconsin, Madison, WI 53706
Get access

Abstract

We have discovered that the β and γ brasses of Cu-Zn exhibit clearly resolved increases in reflectance upon melting with a 30 ns ruby laser, which allow their melt durations to be readily measured. This system thus offers potential for obtaining quantitative information about the solidification kinetics of metals. We have also found that a heteroepitaxial layer of β' brass is formed on the surface of (ordered) γ brass with 63 wt.% Zn following pulsed laser-induced melting. The β' layer is interpreted to mean that the metastable β phase (bcc) formed on the liquid-solid interface as the γ substrate attempted to regrow, and that β ordered to β' (B2) during cooling. The β formation implies that undercoolings > 16 K were attained during the attempted regrowth of the γ phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Follstaedt, D.M., Peercy, P.S. and Perepezko, J.H., Mat. Res. Soc. Symp. Proc. 100, 573 (1988).Google Scholar
2 MacDonald, C. A., Malvezzi, A. M. and Spaepen, F., J. Appl. Phys. 65, p. 129 (1989).Google Scholar
3 Coriell, S. R. and Turnbull, D., Acta Metall. 30, 2135 (1982).Google Scholar
4 Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G. and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
5 Lin, C. J. and Spaepen, F., in Chemistry and Physics of Rapidly Solidified Materials, ed. Berkowitz, B. J. and Scattergood, R. O. (TMS-AIME, New York, 1977), p. 114.Google Scholar
6 Tsao, J.Y., Picraux, S.T., Peercy, P.S. and Thompson, M.O., Appl. Phys. Lett. 48, 278 (1986).Google Scholar
7 Hansen, M. and Anderko, K., Constitution of Binary Alloys (McGraw Hill, New York, 1958), p. 649 (Cu-Zn).Google Scholar
8 Spencer, P. J., CALPHAD 10, 175 (1986).Google Scholar
9 Pearson, W. B., The Crystal Chemistry and Physics of Metals and Alloys. (Wiley-Interscience, New York, 1972) p. 583 (Cu5Zn8).Google Scholar
10 Schroder, K., Handbook of Electrical Resistivities of Binary Metallic Alloys. (CRC Press, Boca Raton, 1983) p. 236 (Cu-Zn).Google Scholar
11 Peercy, P. S. and Wampler, W. R., Appl. Phys. Lett. 40, 768 (1982).Google Scholar
12 Joint Committee on Powder Diffraction Standards card #16-544 (H2O, form Ic at ∼90 K).Google Scholar
13 Pearson's Handbook of Crvstalloeraphic Data for Intermetallic Phase, ed. P. Villars and L. D. Calvert (ASM, Metals Park, 1985), Vol. 3, p. 2948 (ZnO).Google Scholar
14 Baeri, P., Grimaldi, M.G., Priolo, F., Cullis, A.G. and Chew, N.G., J. Appl. Phys. 66, 851 (1988).Google Scholar
15 Knapp, J. A. and Picraux, S. T., Appl. Phys. Lett. 48, 466 (1986).Google Scholar
16 Frohlingsdorf, J. and Stritzker, B., Mat. Res. Soc. Symp. Proc. 100, 609 (1988).Google Scholar
17 Perepezko, J. H., Follstaedt, D. M. and Peercy, P. S., in Selected Topics in Electronic Materials-Extended Abstracts, Eds. Appleton, B. R., Biegelsen, D. K., Brown, W. L. and Knapp, J. A., (MRS, Pittsburgh, 1988), p. 227.Google Scholar