Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T12:10:44.356Z Has data issue: false hasContentIssue false

Prototype Imaging CD-ZN-TE Array Detector

Published online by Cambridge University Press:  10 February 2011

P. F. Bloser
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
T. Narita
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
J. E. Grindlay
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
K. Shah
Affiliation:
Radiation Monitoring Devices, Inc., Watertown, MA 02172
Get access

Abstract

We describe initial results of our program to develop and test Cd-Zn-Te (CZT) detectors with a pixellated array readout. Our primary interest is in the development of relatively thick CZT detectors for use in astrophysical coded aperture telescopes with response extending over the energy range ∼ 10 – 600 keV. The coded aperture imaging configuration requires only relatively large area pixels (1–3 mm), whereas the desired high energy response requires detector thicknesses of at least 3–5 mm. We have developed a prototype detector employing a 10 × 10 × 5 mm CZT substrate and 4 × 4 pixel (1.5 mm each) readout with gold metal contacts for the pixels and continuous gold contact for the bias on the opposite detector face. This MSM contact configuration was fabricated by RMD and tested at Harvard for uniformity, efficiency and spatial as well as spectral resolution. We have developed an ASIC readout (IDE-VA-1) and analysis system and report results, including ∼ 4% (FWHM) energy resolution at 60 keV. A prototype design for a full imaging detector array is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Butler, J., Lingren, C., Doty, F., Trans. Nuc. Sci. 39, 605 (1992).Google Scholar
2. Barrett, H. and Eskin, J., Phys. Rev. Let. 75, 156 (1995).Google Scholar
3. Parsons, A., Stahle, C., Lisse, C., Babu, S., Gehrels, N., Teegarden, B., Shu, P., Proc. SPIE 2305, 121 (1994).Google Scholar
4. Stahle, C., Shi, Z., Hu, K., Barthelmy, S., Snodgrass, S., Bartlett, L., Shu, P., Lehtonen, S., Mach, K., Proc. SPIE 3115, 90 (1997).Google Scholar
5. Matteson, J., Coburn, W., Duttweiler, F., Heindl, W., Huszar, G., Leblanc, P., Pelling, M., Peterson, L., Rothschild, R., Skelton, R., Proc. SPIE 3115, 160 (1997).Google Scholar
6. Tumer, T., O'Neill, T., Hurley, K., Ogelman, H., Paulos, R., Puetter, R., Kipnis, I., Hamilton, W., Proctor, R., in The Transparent Universe (Proc. 2nd INTEGRAL Workshop, St. Malo, France, 1996) pp. 361365.Google Scholar
7. Grindlay, J., Prince, T., Gehrels, N., Tueller, J., Hailey, C., et al., Proc. SPIE 2518, 202 (1995).Google Scholar