Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-26T08:41:45.626Z Has data issue: false hasContentIssue false

Profile Simulation of Reactive Ion Etching for Silicon Tip-on-Post and Bottle-Neck Structures in Fed Applications

Published online by Cambridge University Press:  10 February 2011

A. R. Zoulkarneev
Affiliation:
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea, 440–600
J. M. Kim
Affiliation:
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea, 440–600
J. P. Hong
Affiliation:
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea, 440–600
J. H. Choi
Affiliation:
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea, 440–600
V. V. Michine
Affiliation:
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea, 440–600
Get access

Abstract

This articles describes an investigation of the reactive ion etching of tip-on-post and bottle-neck silicon structures used for fabrication field emission devices. The analytical study for the angular distribution of incident etching ions is presented by the simulation with temporal profile evolution. The surface simulations are compared with experimental results. This comparison shows that numerical expression for the angular distribution could be applied for incident ion flux in case tip-on-post and bottle-neck silicon structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spindt, C. A., J. Appl. Phys. 39, 3504 (1968).Google Scholar
2. Meyer, R., Eurodisplay ‘93 (Strausbourg, France 1993),p.189.Google Scholar
3. Kim, J.M., Choo, D.H., Park, N.S., Choi, J.H., Kim, J.W. Proc. IVMC95 (Portland, Oregon),p. 305, (1995).Google Scholar
4. Smith, R. and Wide, S.J., J. Vac. Sci. Technol. B5, 579 (1987).Google Scholar
5. Gallatin, G.M. and Zarowin, C.B., J. Appl. Phys. 65, 5078 (1989).Google Scholar
6. Pelka, J., Weiss, M., Hoppe, W., and Mewes, D., J. Vac. Sci. Technol. B7(6), 1483 (1989).Google Scholar
7. Pelka, J., Muller, K. P., and Mader, H., IEEE Trans. CAD, 7, 154(1988).Google Scholar
8. Misaka, A., Harafuji, K., Kubota, M., and Nomura, N., Jpn. J. Appl. Phys. Vol. 31, 43634369(1992).Google Scholar
9. Oldham, W., Nandgaonkar, S., Neureether, A. and O'Toole, M., IEEE Trans. Electron Devices 26, 3189(1969).Google Scholar
10. Gotoh, Y., Kure, T., and Tachi, S., Jpn. J. Appl. Phys. Vol.32, 3035 (1993).Google Scholar
11. Arnold, J. C. and Sawin, H. H., Dalvie, M., and Hamaguchi, S., J. Vac. Sci. Technol. A12(3), 620 (1994).Google Scholar
12. Hamaguchi, S. and Dalvie, M. J. Vac. Sci. Technol. A 12(5), 2745 (1994).Google Scholar
13. Singh, V. K., Shaqfeh, E. S. G. and McVitte, J. P., J. Vac. Sci. Technol. B 12(5), 2952 (1994).Google Scholar
14. van Roosmalen, A.J., Baggerman, J.A.G., Baggerman, S.J.H. Dry Etching for VLSI, (Plenum Press, New York, 1991),p. 6.Google Scholar
15. IBID [16]p. 17–20.Google Scholar
16. Flamm, D. L., An Introduction in Plasma Etching, edited by Manos, D. M. and Flamm, D. L. (Academic, San Diego, 1989), p. 129130.Google Scholar