Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T01:59:43.517Z Has data issue: false hasContentIssue false

Preparations, Structures, and Properties of Polysiloxane-Silica Composites Prepared from a Variety of Hydrolyzable Precursors

Published online by Cambridge University Press:  10 February 2011

J. M. Breiner
Affiliation:
Department of Chemistry
J. E. Mark
Affiliation:
Department of Chemistry
G. Beaucage
Affiliation:
Department of Materials Science and Engineering, The University of Cincinnati, Cincinnati, OH 45221
Get access

Abstract

Poly(dimethylsiloxane) (PDMS) networks were prepared by tetrafunctionally endlinking hydroxyl-terminated chains with tetraethoxysilane (TEOS). The resulting networks were filled in-situ by hydrolysis-condensation reactions that were either acid or base catalyzed reactions on some novel precursors. These precursors included star-shaped molecules, rings, linear comb-like chains, and pre-hydrolyzed products of silanes such as TEOS. Both monomethoxy and trimethoxy groups were used as hydrolyzable groups on these molecules. The structures of the resulting composites were examined by small-angle X-ray scattering, and their mechanical properties were determined using equilibrium stress-strain measurements in elongation. Novel precursors with monomethoxy functionalities did not generate stable particulates, but those with trimethoxy functionalities did, with some improvements in mechanical properties. Partially-hydrolyzed TEOS provided the best reinforcement of these PDMS elastomers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Polmanteer, K. E. andLentz, C. W., Rubber Chem. Technol., 48, 795 (1975).Google Scholar
2. Dannenberg, E. M., Rubber Chem. Technol., 48, 410 (1975).Google Scholar
3. Mark, J. E. in “Ultrastructure Processing of Advanced Ceramics”, MacKenzie, J. D. and Ulrich, D. R. (eds), Wiley, New York, 1988.Google Scholar
4. Mark, J. E. andErman, B, “Rubberlike Elasticity, A Molecular Primer”, Wiley-I nterscience, New York,1988.Google Scholar
5. Mark, J. E. in “Frontiers of Macromolecular Science”, Saegusa, T, Higashimura, T, and Abe, A (eds) Blackwell, Oxford, 1989.Google Scholar
6. Mark, J. E. andPan, S. J., Makromol Chem. Rapid Comm., 3, 681 (1982).Google Scholar
7. Jiang, C. Y. andMark, J. E., Makromol Chem., 185, 758 (1984).Google Scholar
8. Jiang, C. Y. andMark, J. E., Coll. Polym. Sci., 262, 758 (1984).Google Scholar
9. Ning, Y. P., Tang, M. Y., Jiang, C. Y., Mark, J. E., andRoth, W. C., J. Appl. Polym. Sci., 29, 3209 (1984).Google Scholar
10. Ning, Y. P. andMark, J. E., Polym. Eng. Sci., 26, 167 (1986).Google Scholar
11. Mark, J. E., Ning, Y. P., Tang, M. Y., andRoth, W. C., Polymer, 26, 2069 (1985).Google Scholar
12. Mark, J. E., J. Appl. Polym. Sci., Appl. Polym. Symp., 50, 273 (1992).Google Scholar
13. Mark, J. E., Polym. Eng. Sci., 36, 2905 (1996).Google Scholar
14. Mark, J. E., Hetero. Chem. Rev., 3, 307 (1996).Google Scholar
15. Mark, J. E. andWang, S. B., Polym. Bull., 20, 443 (1988).Google Scholar
16. Sur, G. S. andMark, J. E., Eur. Polym. J., 21, 1051 (1985).Google Scholar
17. Wang, S. B. andMark, J. E., Polym. Bull., 17, 231 (1987).Google Scholar
18. Clarson, S. J. andMark, J. E., Polym. Comm., 30, 275 (1989).Google Scholar
19. Wang, S. B. andMark, J. E., J. Macromol. Sci., Macromol. Reports, A28, 185 (1991).Google Scholar
20. Livage, J andSanchez, C, J. Non-Cryst. Solids, 145,11 (1992).Google Scholar
21. Schaefer, D. W. andKeefer, K. D., Mat. Res. Soc. Symp. Proc., 32,1 (1984).Google Scholar
22. Keefer, K. D., Mat. Res. Soc. Symp. Proc., 32, 15 (1984).Google Scholar
23. Schaefer, D. W. andKeefer, K. D., Phys. Rev. Lett., 53,1383 (1984).Google Scholar
24. Keefer, K. D. andSchaefer, D. W., Phys. Rev. Lett., 56, 2376 (1986).Google Scholar
25. Landry, M. R., Coltrain, B. K., Landry, C. J. T., and O‘Reilly, J. M., J. Polym. Sci., Polym. Phys. Ed., 33, 637 (1995).Google Scholar
26. Wignall, G. D. in “Physical Properties of Polymers Handbook”,Mark, J. E. (ed.), Springer-Verlag, New York, 1996, p 299.Google Scholar
27. McCarthy, D. W., Mark, J. E., andSchaefer, D. W., J. Polym. Sci., Polym. Phys. Ed., 36, 000 (1998).Google Scholar
28. McCarthy, D. W., Mark, J. E., Clarson, S. J., andSchaefer, D. W., J. Polym. Su., Polym. Phys. Ed., 36, 000 (1998).Google Scholar
29. Breiner, J. M., Ph.D. Thesis in Chemistry, The University of Cincinnati, 1996.Google Scholar
30. Beaucage, G, J. Non-Cryst. Solids, 172–174, 797 (1994).Google Scholar
31. Beaucage, G, J. Appl. Cryst., 28, 717 (1994).Google Scholar