Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-29T15:58:32.716Z Has data issue: false hasContentIssue false

Preparation and Optical Properties of Ge and C-Induced Ge Quantum Dots on Si

Published online by Cambridge University Press:  10 February 2011

K. Eberl
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany, Electronic mail: eberl@servix.mpi-stuttgart.mpg.de
O. G. Schmidt
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany
O. Kienzle
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
F. Ernst
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
Get access

Abstract

Pure Ge epitaxially grown on Si (100) at high temperatures forms typically 100 nm lateral size islands on top of a 3–4 monolayer thick wetting layer. In stacked layers of Ge dots pronounced vertical alignment is observed if the thickness of the Si spacer layers is smaller than about 50 nm. Pregrowth of a small amount of C on Si substrate induces very small 10 nm size Ge quantum dots after deposition of about 2 to 3 monolayers Ge. Photoluminescence (PL) studies indicate a spatially indirect radiative recombination mechanism with the no-phonon line strongly dominating. Strong confinement shift in the 1–2 nm high and 1Onm lateral size dots results in low activation energies of 30 meV, which causes luminescence quenching above 50K.

For large stacked Ge islands with 13 nm thin Si spacer layers we observe a significantly enhanced Ge dot-related PL signal up to room temperature at 1.55μm wave length. This is attributed to a spatially indirect transition between heavy holes confined within the compressively strained Ge dots and two-fold degenerated Δ state electrons in the tensile strained Si between the Ge stacked dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iyer, S.S. and Xie, Y. H., Science 260, 40 (1993).Google Scholar
2. Schmidt, O.G. and Eberl, K., Phys. Rev. Lett. 15, 3396 (1998).Google Scholar
3. Hybertsen, M.S., Phys. Rev. Lett. 72, 1514 (1994).Google Scholar
4. Brunner, K., Eberl, K. and Winter, W., Phys. Rev. Lett. 76, 303 (1996).Google Scholar
5. Williams, R.L., Aers, G.C., Rowell, N.L., Brunner, K., Winter, W., Eberl, K. Appl. Phys. Lett. 72, 1320 (1998)Google Scholar
6. Rowell, N.L., Williams, R.L., Aers, G.C., Lafontaine, H., Houghton, D. C., Brunner, K., Winter, W., Eberl, K., Mat. Res. Soc. Symp. Proc. Vo. 533, 235 (1998).Google Scholar
7. Stoica, T., Vescan, L. and Goryll, M., J. Appl. Phys. 83, 3367 (1998)Google Scholar
8. Tang, Y.S., Torres, C.M. Sotomayor, Nilsson, S., Dietrich, B., , Kissinger, Wall, T.E., Parker, E.H.C., Ni, W.X., Hansson, G.V., Presting, H. and Kibbel, H., Journal of Electronic Materials, 25 287 (1996).Google Scholar
9. Usami, N., Issiki, F., Nayak, D.K., Shiraki, Y. and Fukatsu, S., Appl Phys. Lett., 67 524 (1995).Google Scholar
10. Usami, N., Shiraki, Y. and Fukatsu, S., Appl Phys. Lett., 68, 2340 (1996).Google Scholar
11. Brunner, K., Winter, W., and Eberl, K., Appl. Phys. Lett., 69, 1279 (1996).Google Scholar
12. Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., and Lagally, M.G., Phys. Rev. Lett., 65, 1020 (1990).Google Scholar
13. Sasaki, A. and Tatsumi, T., Appl. Phys. Lett. 64, 52 (1994).Google Scholar
14. Abstreiter, G., Schittenhelm, P., Engel, C., Silveira, E., Zrenner, A., Meertens, D. and Jager, W., Semicond. Sci. Technol. 11, 1521 (1996).Google Scholar
15. Sunamura, H., Usami, N., Shiraki, Y. and Fukatsu, S., Appl. Phys. Lett. 66, 3024 (1995).Google Scholar
16. Christiansen, S., Albrecht, M., Strunk, H.P., and Maier, H.J., Appl. Phys. Lett. 64, 3617 (1994).Google Scholar
17. Cunningham, B., Chu, J.O., and Akbar, S., Appl. Phys. Lett. 59, 3574 (1991).Google Scholar
18. Dutartre, D., Warren, P., Chollet, F., Gisbert, F., Bérenguer, M.. and Berbdzier, I., J. Cryst. Growth 142, 78 (1994).Google Scholar
19. Apetz, R., Vescan, L., Hartmann, A., Dieker, C.. and Ltith, H., Appl. Phys. Lett., 66, 445 (1995).Google Scholar
20. Schmidt, O.G., Lange, C., Eberl, K., Kienzle, O.. and Ernst, F., Appl Phys. Lett 71, 2340 (1997).Google Scholar
21. Schmidt, O.G., Lange, C., Eberl, K., Kienzle, O.. and Ernst, F., Thin Solid Films 321, 70 (1998).Google Scholar
22. Eberl, K., Schmidt, O.G., Schicker, S., Jin-Phillipp, N.Y. and Phillipp, F., Solid State Electronics, 42, 1593 (1998).Google Scholar
23. Schmidt, O.G. and Eberl, K., Appl Phys. Lett 73, 2790 (1998).Google Scholar
24. Fukatsu, S., Sunamura, H., Shiraki, Y. and Komiyama, S., Appl. Phys. Lett. 71, 258 (1997).Google Scholar
25. Leifeld, O., Muller, E., Grfitzmacher, D., Mifller, B. and Kern, K., Appl. Phys. Lett. 74, 994 (1999).Google Scholar
26. Schmidt, O.G., Schicker, S., Eberl, K., Kienzle, O. and Ernst, F., Appl Phys. Lett 73, 659 (1997).Google Scholar
27. Kienzle, O., Ernst, F., RffhIe, M., Schmidt, O.G. and Eberl, K., Appl Phys. Lett 74, 269 (1999).Google Scholar