Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T09:44:22.151Z Has data issue: false hasContentIssue false

Polysilicon/Silicon Interfaces: Effect of Processing Parameters on Physical and Electrical Properties

Published online by Cambridge University Press:  03 September 2012

K. Srikrishna
Affiliation:
Technology Development, National Semiconductor Corporation, Santa Clara CA 95051.
M. Moinpour
Affiliation:
Technology Development, National Semiconductor Corporation, Santa Clara CA 95051.
B. Landau
Affiliation:
Technology Development, National Semiconductor Corporation, Santa Clara CA 95051.
Get access

Abstract

An arsenic doped polysilicon emitter structure is widely used as an important technology for high speed BiPolar and BiCMOS VLSI devices. The electrical behavior of such emitters is dictated to a large degree by the structure of the polysilicon/silicon interface and the extent of any interfacial oxide. In particular the contact resistance of n+ and p+ diffused regions of the polysilicon is sensitive to the interfacial structure. The microstructure of the polysilicon, in addition to the interface, dictates the junction depth and electrical properties and is determined by the deposition conditions and subsequent doping and annealing processes. The interface itself is defined largely by the cleaning procedure and the initial stages of the deposition process. In this paper we report the effects of process variables, such as deposition temperature, doping and annealing times and temperatures and pre-cleans on the microstructure and electrical properties of poly-emitters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ning, T. H. and Isaac, R. D., IEEE Trans. Electron Devices, ED-27, 2051 (1980).CrossRefGoogle Scholar
2. de Graff, H. C. and de Groot, J. C., IEEE Trans. Electron Devices, ED-26, 1771 (1979).CrossRefGoogle Scholar
3. Bravman, J. C., Patton, G. L. and Plummer, J. D., J Appl. Phys. 57 (8), 2779 (1985).CrossRefGoogle Scholar
4. Crabbe, E. F., Hoyt, J. L., Pease, R. F. W. and Gibbons, J. F., Mat. Res. Soc. Symp. Proc, 106 247 (1988).CrossRefGoogle Scholar
5. Natsuaki, N., Tamura, M., Miyazaki, T. and Yanagi, N., IEDM Tech. Dig. 662 (1983).Google Scholar
6. Wilson, M. C., Ashburn, P., Soerowirdjo, B., Booker, G. R. and Ward, P., J. Phys (Paris) Colloq. 43 Suppl. 10, C1253 (1982).Google Scholar
7. van der Heide, P. A. M., Baan-Hofman, M. J. and Ronde, H. J., J. Vac. Sci. Technol. A 7, 1719 (1989).CrossRefGoogle Scholar
8. Offenberg, M., Liehr, M., Rubloff, G. W. and Holloway, K., Appl. Phys. Lett. 57 (12) 1254 (1990)CrossRefGoogle Scholar
9. Wong, M., Moslehi, M. M. and Reed, D. W., J. Electrochem. Soc, 138, 6 (1991).CrossRefGoogle Scholar
10. Werkhoven, C. J., Westendorp, J. E. M., Huusen, F. and Granneman, E. H. A., Semiconductor International, 5, 228 (1991).Google Scholar
11. Chabal, Y. J., Higashi, G. S. and Raghavachari, K., J. Vac. Sci. Tech., A7 2104 (1989).CrossRefGoogle Scholar
12. Harbeke, G., Krausbauer, L., Steigmeier, E. F., Widmer, A. E., Kappert, H. F. and Neugebauer, G., J. Electrochem. Soc, 131 (3), 675 (1984).CrossRefGoogle Scholar
13. Angelucci, R., Seven, M. and Solmi, S., Materials Chem. and Phys, 9 235 (1987).CrossRefGoogle Scholar
14. Hatalis, M. K. and Greve, D. W., Mat. Res. Soc. Symp. Proc, 106 335 (1988).CrossRefGoogle Scholar
15. Stork, J. M. C., Arienzo, M. and Wong, C. Y., Trans. Elec. Dev., 32 1766 (1985).CrossRefGoogle Scholar
16. Patton, G. L., Bravman, J. C. and Plummer, J. D., Trans. Elee Dev, 33 1754 (1986).CrossRefGoogle Scholar