Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T05:38:00.435Z Has data issue: false hasContentIssue false

Poly(glycerol sebacate)—A Novel Biodegradable Elastomer for Tissue Engineering

Published online by Cambridge University Press:  01 February 2011

Yadong Wang
Affiliation:
Department of Chemical Engineering
Barbara J. Sheppard
Affiliation:
Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Robert Langer
Affiliation:
Department of Chemical Engineering
Get access

Abstract

Biodegradable polymers have significant potential in biotechnology and bioengineering. However, for some applications, they are limited by their inferior mechanical properties and unsatisfactory compatibility with cells and tissues. A strong, biodegradable, and biocompatible elastomer could be useful for fields such as tissue engineering, drug delivery, and in vivo sensing [1, 2]. We designed, synthesized, and characterized a tough biodegradable elastomer from biocompatible monomers. This elastomer forms a covalently crosslinked three-dimensional network of random coils with hydroxyl groups attached to its backbone. Both crosslinking and the hydrogen bonding interactions between the hydroxyl groups likely contributes to the unique properties of the elastomer. In vitro and in vivo studies show the polymer has good biocompatibility. Subcutaneous (SC) polymer implants are absorbed completely within 60 days with restoration of the implantation sites to their normal architecture.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peppas, N. A. & Langer, R.. Science 263, 17151720 (1994).Google Scholar
2. Langer, R.. AIChE J. 46, 12861289 (2000).Google Scholar
3. Storey, R. F., Warren, S. C., Allison, C. J. & Puckett, A. D.. Polymer 38, 62956301 (1997).Google Scholar
4. Park, E.-S., Maniar, M. & Shah, J. C.. J. Controlled Release 48, 6778 (1997).Google Scholar
5. Anderson, J. M. & Shive, M. S.. Adv. Drug Deliv. Rev. 28, 524 (1997).Google Scholar
6. Anderson, J. M.. Eur. J. Pharm. Biopharm. 40, 18 (1994).Google Scholar
7. Hansen, M. B., Nielsen, S. E. & Berg, K.. J. Immunol. Methods 119, 203210 (1989).Google Scholar
8. Rigid, totally crosslinked polymer has been synthesized from glycerol and sebacic acid (glycerol/sebacic acid molar ratio: 2/3) uder different conditions. See: Nagata, M., et al. Synthesis, characterization, and enzymatic degradation of network aliphatic copolyesters. J. Polym. Sci., Part A: Polym. Chem. 37, 20052011 (1999).Google Scholar
9. Nagdi, K.. Rubber as an Engineering Material: Guideline for Users (Hanser, Munich, 1993).Google Scholar
10. Fratzl, P. et al. J. Struct. Biol. 122, 119122 (1998).Google Scholar
11. Northup, S. J. & Cammack, J. N.. in Handbook of Biomaterials Evaluation (ed. von Recum, A. F.) 325339 (Taylor & Francis, Philadelphia, 1999).Google Scholar
12. Cadee, J. A., Brouwer, L. A., Otter, W. den, Hennink, W. E. & Luyn, M. J. A. Van. J. Biomed. Mater. Res. 56, 600609 (2001).Google Scholar
13. Elst, M. van der, Klein, C. P. A. T., Blieck-Hogervorst, J. M. de, Patka, P. & Haarman, H. J. T. M.. Biomaterials 20, 121128 (1999).Google Scholar
14. Jayachandran, K. N. & Chatterji, P. R.. Eur. Polym. J. 36, 743749 (2000).Google Scholar
15. Laschewsky, A., Rekai, E. D. & Wischerhoff, E.. Macromol. Chem. Phys. 202, 276286 (2001).Google Scholar
16. Barrera, D. A., Zylstra, E., Lansbury, P. T. Jr, & Langer, R.. J. Am. Chem. Soc. 115, 1101011011 (1993).Google Scholar
17. West, J. L. & Hubbell, J. A.. Macromolecules 32, 241244 (1999).Google Scholar
18. Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H. & West, J. L.. Biomaterials 22, 30453051 (2001).Google Scholar