Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T05:21:26.778Z Has data issue: false hasContentIssue false

Plasticized conjugated polymers: a possible route to higher voltage solar cells

Published online by Cambridge University Press:  01 February 2011

Paul Wentzel
Affiliation:
Energy Storage research group, Department of Ceramics and Materials Engineering, Rutgers, The State University of New Jersey 10, Knightsbridge Road, Piscataway NJ 08854
Aurelien Du Pasquier
Affiliation:
Energy Storage research group, Department of Ceramics and Materials Engineering, Rutgers, The State University of New Jersey 10, Knightsbridge Road, Piscataway NJ 08854
Get access

Abstract

The introduction of propylene carbonate (PC) into the poly (3-alkyl)thiophenes (P3AT) poly(octyl)thiophene (P3OT) and poly(hexyl)thiophene) (P3HT) is studied. In both cases, we observe a diminution of their melting temperature, which demonstrates a plasticizing effect. We also observe an increase of photovoltage and photocurrent in sandwich devices M//P3AT+PC//ITO-PET where M=Al, Mg and ITO-PET is Indium thin oxide coated on polyester. We attribute this effect to the introduction of oxygen from the PC. When mixed with an electron acceptor PCBM, the photocurrents only slightly increase and the photovoltages are similar. In this case, the presence of oxygen is detrimental to the system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sariciftci, N.S., Smilowitz, L., Heeger, A.J., Wudl, F., Science, New Series 258, 14741476 (1992)Google Scholar
2. Zerza, G., Brabec, C. J., Cerullo, G., De Silvestri, S. and Sariciftci, N. S., Synthetic Metals 119, 637638 (2001)Google Scholar
3. Brabec, Christoph J., Zerza, Gerald, Cerullo, Giulio, De Silvestri, Sandro, Luzzati, Silvia, Hummelen, Jan C. and Sariciftci, Serdar, Chemical Physics Letters 340, 232236 (2001)Google Scholar
4. Sariciftci, N.S., Heeger, A.J., Handbook of Organic conductive molecules and Polymers, Willey (1997)Google Scholar
5. Padinger, F., Brabec, C. J., Hummelen, J. C., Janssen, R. A. J. and Sariciftci, N. S., Synthetic Metals 102, 12851286 (1999)Google Scholar
6. Camaioni, N., Catellani, M., Luzzati, S. and Migliori, A., Thin Solid Films 403–404, 489494 (2002)Google Scholar
7. Granstrom, M., Petritsch, K., Arias, A. C., Lux, A., Andersson, M. R.Friend, R. H., Nature 395, 257260 (1998)Google Scholar
8. Al-Ibrahim, Maher, Klaus Roth, H.-K.H., Zhokhavets, Uladzimir, Gobsch, Gerhard and Sensfuss, Steffi Solar Energy Materials and Solar Cells 85, 1320 (2005)Google Scholar
9. Brabec, Christoph J., Cravino, Antonio, Meissner, Dieter, Serdar Sariciftci, N., Fromherz, Thomas, Rispens, Minze T., Sanchez, Luis, and Hummelen, Jan C., Adv. Funct. Mater. 11, 374380 (2001)Google Scholar
10. Gebeyehu, D., Brabec, C.J., Padinger, F., Fromherz, T., Hummelen, J.C., Badt, D., Schindler, H., Sariciftci, N.S., Synthetic Metals 118, 19 (2001)Google Scholar
11. Micaroni, L., Polo da Fonseca, C. N., Decker, F. and De Paoli, M.-A., Solar Energy Materials and Solar Cells 60, 2741 (2000)Google Scholar