Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-23T11:01:33.265Z Has data issue: false hasContentIssue false

Physical Structure and the Electrochromic effect in Tungsten Oxide Films

Published online by Cambridge University Press:  21 February 2011

A. P. Giri
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
R. Messier
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

In all previous studies of tungsten oxide films it has been implicitly assumed that the film is uniform except for grain boundaries in polycrystalline films. In this study we show that amorphous tungsten oxide thin films contain highly anisotropic void networks which not only dominate their physical structure but also control their electrochromic behaviour. The void network structure is controlled primarily through ion bombardment of the growing film during deposition while the film stoichiometry HyWO3−x is controlled by the reactive sputtering processes of tungsten in Ar/O2/H2 atmospheres. The evolutionary growth model of physical structure was studied in detail by both transmission and scanning electron microscopy. On the basis of physical structure-property correlations we are able to consistently explain the basic electrochromic characteristics and chemical stability of the films. Such information leads to better understanding of the problems and limitations inherent in thin film electrochromic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deb, S.K., Appl. Opt. Suppl. 3, 193 (1969)Google Scholar
and Deb, S.K., Phil. Mag. 27, 801 (1973).CrossRefGoogle Scholar
2. Fanghnan, B.W., Crandall, R.S., and Heyman, P.M., RCA Rev. 36, 177 (1975).Google Scholar
3. Chang, I.F., in Nonemissive Electrooptic Displays, eds. Kmetz, A.R. and von Willisen, F.K., Plenum Press, New York (1975) p. 155; and references therein.Google Scholar
4. Arnoldussen, T.C., J. Electrochem. Soc. 128, 117 (1981).Google Scholar
5. Vértes, A. and Schiller, R., J. Appl. Phys. 54, 199 (1983).Google Scholar
6. Green, M., Thin Solid Films 50, 145 (1978).Google Scholar
7. Green, M., Smith, W.C., and Weiner, J.A., Thin Solid Films 38, 89 (1976).Google Scholar
8. Dautremont-Smith, W.C., Green, M., and Kang, K.S., Electrochemica Acta 22, 751 (1977).Google Scholar
9. Miyake, K., Kaneko, H., Suedomi, N., and Nishimoto, S., J. Appl. Phys. 54, 5256 (1983).CrossRefGoogle Scholar
10. Messier, R., Roy, R.A., and Giri, A.P., J. Vac. Sci. Technol. A (in press).Google Scholar
11. Messier, R. and Ross, R.C., J. Appl. Phys. 53, 6220 (1982).Google Scholar
12. Ross, R.C. and Messier, R., J. Appl. Phys. 52, 5329 (1981).Google Scholar
13. Gérard, P., Deneuville, A., and Courths, R., Thin Solid Films 71, 221 (1980).Google Scholar
14. Thornton, J.A., Ann. Rev. Mat. Sci. 7, 239 (1977).Google Scholar
15. Gilbert, L.R., Messier, R., and Krishnaswamy, S.V., J. Vac. Sci. Technol. 17, 389 (1980).Google Scholar
16. Shiojiri, M., Miyano, T., and Kaito, C., Jpn. J. Appl. Phys. 17, 567 (1978).Google Scholar
17. For example: D'Aiello, R.V. and Freedman, S.J., J. Appl. Phys. 40, 2156 (1969);Google Scholar
Leamy, H.J. and Dirks, A.G., J. Appl. Phys. 49, 3430 (1978);Google Scholar
and Nakahara, S., Thin Solid Films 45, 421 (1977).CrossRefGoogle Scholar
18. Kaneko, H., Miyake, K., and Teramoto, Y., J. Appl. Phys. 53, 4416 (1982).Google Scholar
19. Kaneko, H., Miyake, K., and Teramoto, Y., J. Appl. Phys. 53, 3070 (1982).Google Scholar
20. Miyake, K., Kaneko, H., and Teramoto, Y., J. Appl. Phys. 53, 1511 (1982).Google Scholar
21. Swab, P., Krishnaswamy, S.V., and Messier, R., J. Vac. Sci. Technol. 17, 362 (1980).Google Scholar
22. Messier, R., Krishnaswamy, S.V., Gilbert, L.R., and Swab, P., J. Appl. Phys. 51, 1611 (1980).Google Scholar
23. Sun, S.S. and Holloway, P.H., presented at 30th National Symp. of the Amer. Vac. Soc., Boston, Nov. 1983, paper no. TFThA04.Google Scholar
24. Ross, R.C. and Messier, R., J. Appl. Phys. 54, 5744 (1980);Google Scholar
Ross, R.C., Tsong, I.S.T., Messier, R., Lanford, W.A., and Burman, C., J. Vac. Sci. Technol. 20, 406 (1982).Google Scholar