Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T11:31:27.995Z Has data issue: false hasContentIssue false

Photoluminescence and Raman Scattering from (CdSe)m,(ZnSe)n-ZnSe Multiple Quantum Wells Under Hydrostatic Pressure

Published online by Cambridge University Press:  15 February 2011

J. Q. Zhang
Affiliation:
National Laboratory for Superlattices and Nlicrostriictures, Institute of Semiconductors, Academia Sinica, Beijing 100083, China
Z. X. Liu
Affiliation:
National Laboratory for Superlattices and Nlicrostriictures, Institute of Semiconductors, Academia Sinica, Beijing 100083, China
Z. P. Wang
Affiliation:
National Laboratory for Superlattices and Nlicrostriictures, Institute of Semiconductors, Academia Sinica, Beijing 100083, China
H. X. Han
Affiliation:
National Laboratory for Superlattices and Nlicrostriictures, Institute of Semiconductors, Academia Sinica, Beijing 100083, China
G. H. Li
Affiliation:
National Laboratory for Superlattices and Nlicrostriictures, Institute of Semiconductors, Academia Sinica, Beijing 100083, China
Z. L. Peng
Affiliation:
Shanghai Institute of Technical Physics, Academia Sinica, Shanghai 200083, China
S. X. Yuan
Affiliation:
Shanghai Institute of Technical Physics, Academia Sinica, Shanghai 200083, China
Get access

Abstract

The photoluminescence and Raman scattering of {|(CdSe)1 (ZnSe)3|14-(ZnSe)130} × 5 multiple quantum well structure have been investigated at 77 K and under hydrostatic pressure up to 7 GPa. Resonant excitations have been accomplished by turning the electronic levels under hydrostatic high pressure. Two kind of excitons and ZnSe-like LO phonon modes as well as their pressure behavior are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haase, M. A., Qibu, J., DePuydt, J. M. and Cheng, H., Appl. Phys. Lett. 59, p.1272 (1991).Google Scholar
2. Nakayanra, N., Itoh, S., Okuyana, H., Ozawa, M., Ohata, T., Nakano, K., Ikeda, M., Ishibashi, A. and Mori, Y., Electron. Lett. 29, p.2194 (1993).Google Scholar
3. Eason, D., Ren, J., Yu, Z., Hughes, C., Cook, J.W. Jr, Schetzina, J.F., EI-Masry, N.A., Cantwell, G. and Harsh, W.C., J. Cryst. Growth, 150, p.718 (1995).Google Scholar
4. Zajicek, H., Juza, P., Abramof, E., Pankratov, O., Siffer, H., Heln, M., Brunthaler, G., Fasachinger, W. and Lischka, K., Appl. Phys. Lett. 62, p.717 (1993).Google Scholar
5. Parbrook, P. J., Henderson, B., O'Donnell, K. P., Wright, P. J. and Cockayne, B., J. Cryst. Growth, 117, p. 492 (1992).Google Scholar
6. Peng, Z. L., Li, J., Yao, W. H., He, L., Cheng, X. Y. and Yuan, S. X., Jpn. J. Appl. Phys. 31, p. L1583 (1992).Google Scholar
7. Rockwell, B., Chandrasekhar, H. R., Chandrasekhar, M., Ramdas, A. K., Kobayashi, M. and Gunshor, R. L., Phys.Rev. B44, p.11307 (1991).Google Scholar
8. Shan, W., Hays, J. M., Yang, X. H., Song, J. I., Cantwell, E. and Aldridge, J., Appl. Phys. Lett. 60, p.736 (1992).Google Scholar
9. Cui, L. J., Venkateswarn, U. D., Weinstein, B. A. and Jonker, B. T., Phys. Rev. B44, p. 10949 (1991).Google Scholar
10. Hwang, S. J., Sham, W., Song, J. J., Zhu, Z. Q. and Yao, T., Appl. Phys. Lett. 64, p. 2267 (1994).Google Scholar
11. Mei, J. R. and Lemos, V., Solid State Common. 52, p.785 (1984).Google Scholar
12. Alonso, R. G., Suh, E. K., Ramdas, A. K., Samarth, N., Luo, H. and Furdyna, J. K., Phys. Rev. B40, p. 3720 (1989).Google Scholar
13. Wang, Z. P., Han, H. X., Liu, Z. X., Qin, W. T., Peng, Z. L. and Yuan, S. X., in Growth, Processing and Characterization of Semiconductor Hletrostrucxtures, edited by Gumbs, G., Luryi, S., Weiss, B. and Wick, G.W. (Mater. Res. Soc. Proc. 326, Pittsburgh, PA 1994), p.425430.Google Scholar
14. Li, G.H., Han, H.X., Wang, Z.P., Li, J., Ho, L. and Yuan, S.X., Chin.J.Semicond. 14, p. 199 (1993).Google Scholar