Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T17:11:07.340Z Has data issue: false hasContentIssue false

Photo-Induced Reversible Modification of II-VI Semiconductor Surface Composition and Structure

Published online by Cambridge University Press:  26 February 2011

P. D. Brewer
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
J. J. Zinck
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
G. L. Olson
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
Get access

Abstract

It is shown that the composition and structure of CdTe and CdS surfaces can be reversibly controlled by excimer laser irradiation at fluences below the melting threshold. The removal rate is observed to depend exponentially on laser fluence up to the melting threshold. The translational energies of products desorbed from laser-irradiated CdTe surfaces were determined using time-of-flight spectrometry and are well-described by a Maxwellian velocity distribution. The dynamics of the photo-stimulated desorption process are correlated with the laser-induced changes in composition, and it is shown that the data are consistent with a thermal mechanism for desorption. A model is introduced which describes the reversible, fluence-dependent changes in composition and structure in terms of the kinetic competition between formation and desorption processes at the semiconductor surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ichige, K., Matsumoto, Y., and Namiki, A., Nucl. Instr. Meth. Phys. Res. B33. 820 (1988).Google Scholar
2. Namiki, A, Kawai, T., and Ichige, K., Surf. Sci. 166, 129 (1986);Google Scholar
Namiki, A., Fukano, H., Kawai, T., Yasuda, Y., and Nakamura, T., J. Phys Soc. Jpn. 54, 3162 (1985);Google Scholar
Namiki, A., Watabe, K., Fukano, H., Nishigaki, S., and Noda, T., Surf. Sci. Lett. 128 L243 (1983).Google Scholar
3. Donnelly, V.M., McCrary, V., and Brasen, D., Mat. Res. Soc. Sym. Proc. 21 567 (1987).Google Scholar
4. Namiki, A., Kawai, T., Yasuda, Y., and Nakamura, T., Jpn. J. Appl. Phys. 24, 270 (1985).Google Scholar
5. Nakayama, N., Surf. Sci. 122, 101 (1983).Google Scholar
6. Namiki, A., Cho, S., and Ichige, K., Jpn. J. Appl. Phys. 26, 39 (1987).Google Scholar
7. Cowin, J.D., Auerbach, D.J., Becker, C., and Wharton, L., Surf. Sci. 28, 545 (1978);Google Scholar
NoorBatcha, I., Lucchhese, R.R., and Zeiri, Y., J. Chem. Phys. 86, 5816 (1987).Google Scholar
8. Itoth, N. and Nakayama, T., Phys. Lett. 92A. 471 (1982);Google Scholar
Tanimura, K. and Itoh, N., Nucl. Inst. Meth. Phys. Res. B33, 815 (1988);Google Scholar
Wautelet, M., Surf. Sci. 122, L437 (1983);Google Scholar
Combescot, M. and Bok, J., Phys. Rev. Lett. 48, 1413 (1982).Google Scholar
9. Brewer, P.D., Zinck, J.J., and Olson, G.L., Appl. Phys. Lett. 48, 2526 (1990);Google Scholar
Mat. Res. Soc. Symp. 191, 2L67 (1990).Google Scholar
10. Pospieszczyk, A., Abdel Harith, M., and Stritzker, B., J. Appl. Phys. 54, 3176 (1983);Google Scholar
Moison, J.M. and Bensoussan, M., J. Vac. Sci. Technol. 21 315 (1982).Google Scholar
11. Zinck, J.J., Brewer, P.D., and Olson, G.L. to be published.Google Scholar
12. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids (oxford University, Oxford, 1959). For a review of heat flow calculations see:Google Scholar
Baeri, P. and Campisano, S.V., in Laser Annealing of Semiconductors, ed. by Poate, J.M. and Mayer, J.W. (Academic Press, New York, 1982) pp 75109.Google Scholar
13. Handbook of Optical Constants of Solids Ed. Palik, Edward D. (Academic Press, Inc. New York, 1985) pp. 409427.Google Scholar
14. Slack, G.A., and Galginaitis, S., Phys. Rev. 133, A253 (1964);Google Scholar
Bhandari, C.M. and Rowe, D.M., Thermal Conduction in Semiconductors (John Wiley & Sons, New York, 1988).Google Scholar
15. Arias, J.M. and Sullivan, G., J. Vac. Sci. Technol. A5 3143 (1987);Google Scholar
Dubowski, J.J., Wrobel, J.M., and Williams, D.F., Appl. Phys. Lett. 32, 660 (1988).Google Scholar
16. Somorjai, G.A. and Lester, J.E., J. Chem. Phys. 42, 1450 (1965).Google Scholar
17. Holland, M.G., Phys. Rev. 134, A471 (1964).Google Scholar