Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-27T11:41:11.119Z Has data issue: false hasContentIssue false

Phase Mapping Sputter Deposited Wide Band-Gap Metal Oxides

Published online by Cambridge University Press:  25 February 2011

C.R. Aita
Affiliation:
Materials Department, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, WI 53201
R.C. Lee
Affiliation:
Materials Department, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, WI 53201
C.-K. Kwok
Affiliation:
Materials Department, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, WI 53201
E.A. Kolawa
Affiliation:
Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Reactive sputter deposition is a widely-used process for growing films of high melting point materials near room temperature and desirable metastable structures not attainable in material grown under conditions of thermodynamic equilibrium. Both categories include wide band-gap metal oxides. A first step towards reproducible growth is to develop a “phase map” for the metal-oxygen system of interest. The map graphically relates independent sputter deposition process parameters, the growth environment, and the metallurgical phase(s) formed in the film. This paper shows how phase maps are constructed and used to observe general trends in oxide phase formation sequence, with examples from the Nb-O, Y-O, and Zr-O systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example: Lagally, M. G., Mo, Y.-W., Kariotis, R., Swartzentruber, B. S., and Webb, M. B., in Kinetics of Ordering and Growth at Surfaces (edited by Lagally, M. G., Plenum, NY, NY, 1990) pp. 145150.CrossRefGoogle Scholar
2. Aita, C. R.: J. Vac. Sci. Technol., A 3, 625 (1985).CrossRefGoogle Scholar
3. Lee, R. C. and Aita, C.R., J. Appl. Phys. 70. 2094 (1991).CrossRefGoogle Scholar
4. Lee, R. C. and Aita, C. R., J. Vac. Sci. Technol. A 10, xxx (1992).Google Scholar
5. Kwok, C.-K. and Aita, C. R.: J. Vac. Sci. Technol. A 7, 1235 (1989).CrossRefGoogle Scholar
6. Kwok, C.-K. and Aita, C. R., J. Appl. Phys. 66, 2756 (1989).Google Scholar
7. Kwok, C.-K. and Aita, C. R., J. Vac. Sci. Technol. A 8, 3345 (1990).CrossRefGoogle Scholar
8. Kwok, C.-K., Aita, C. R., and Kolawa, E., J. Vac. Sci. Technol. A 8, 1330 (1990).CrossRefGoogle Scholar
9. Kwok, C.-K., Aita, C. R., and Kolawa, E., J. Appl. Phys. 68, 2945 (1990).CrossRefGoogle Scholar
10. Aita, C. R. and Kwok, C.-K., J. Am. Ceram. Soc. Z2, 3209 (1990).Google Scholar
11. Greene, J. E., J. Vac. Sci. Technol. 15, 1718 (1978).Google Scholar
12. Candler, C., Atomie Spectra and the Vector Model, Van Nostrand, Princeton, NJ, 1964)Google Scholar
13. Kuhn, H. G., Atomic Spectra, (Academic, New York, NY, 1963) pp. 7983.Google Scholar
14. Aita, C. R. and Marhic, M. E., J. Appl. Phys. 52, 6584 (1981).Google Scholar
15. Aita, C. R. and Marhic, M. E., J. Vac. Sci. Technol. A 1, 69 (1983).CrossRefGoogle Scholar
16. Eyring, L.: in Nonstoichiometric Oxides, (edited by. Sorensen, O.T., Academic Press, New York, NY, 1981 ) pp. 366372.Google Scholar
17. Anderson, R. C, in High Temperature Oxides (edited by Alper, A. M., Academic, New York, NY, 1970) Ch. 1.Google Scholar
18. Nigara, Y., Jpn. J. Appl. Phys. 7, 404 (1968).Google Scholar
19. McDevitt, N. T. and Baun, W. L., Spectrochima Acta 20, 799 (1964).CrossRefGoogle Scholar
20. Abramov, V. N. and Kuznetsov, A. I.: Soc. Phys. Solid State, 20, 1978, 399.Google Scholar
21. Ching, W.-Y., private communication.Google Scholar
22. Goldschmidt, H. J., op. cit. pp. 352–7f.Google Scholar
23. See, for a recent review: Ruhle, M., J. Vac. Sci. Technol. A 3, 749 (1985).Google Scholar