Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-26T02:14:34.630Z Has data issue: false hasContentIssue false

Performance of Thin-Film Silicon MEMS Resonators in Vacuum

Published online by Cambridge University Press:  01 February 2011

J. Gaspar
Affiliation:
INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, 1000-029 Lisbon, Portugal Dept. Materials Engineering, Instituto Superior Técnico (IST), Av. Rovisco Pais, 1049-001 Lisbon, Portugal
V. Chu
Affiliation:
INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
J. P. Conde
Affiliation:
INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, 1000-029 Lisbon, Portugal Dept. Materials Engineering, Instituto Superior Técnico (IST), Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Get access

Abstract

This paper reports on the fabrication and characterization of microelectromechanical bridge resonators on glass substrates using thin-film technology and surface micromachining. All the processing steps are performed at temperatures below 110°C. The microbridges consist of either a single layer of heavily doped n-type amorphous silicon (n+-a-Si:H) or bilayers of aluminum (Al) and intrinsic a-Si:H. The bridge is suspended over a gate electrode with a 1 μm air-gap. Applying a voltage between the bridge and an underlying Al gate electrode electrostatically actuates the microstructures. The resulting deflection is monitored optically. The resonance of the microbridges is measured in air and in vacuum. Resonance frequencies up to 70 MHz and quality factors up to 3000 are obtained at pressures below 1 Torr. The energy dissipation mechanisms of the resonators are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Judy, Jack W., Smart Mater. Struct. 10, pp. 11151134, 2001.Google Scholar
2.See for example, Malouf, N., An introduction to Microelectromechanical Systems Engineering. Artech House, Boston, MA, 2000.Google Scholar
3. Gaspar, J., Chu, V., Louro, N., Cabeça, R., and Conde, J. P., J. Non-Crystalline Solids 299-302, pp. 12241228, 2002.Google Scholar
4. Boucinha, M., Chu, V., and Conde, J. P., Appl. Phys. Lett. 73, pp. 502504, 1998.Google Scholar
5. Syllaios, A.J., Schimert, T.R., Gooch, R.W., McCardel, W.L., Ritchey, B.A., Tregilgas, J.H., Mat. Res. Soc. Symp. Proc. 609, A14.4, 2000.Google Scholar
6.See for example, Elwenspoeck, M., and Wiegerink, R., Mechanical Microsensors. Springer, New York, 2001.Google Scholar
7. Conde, J. P., Gaspar, J., and Chu, V., Thin Solid Films 427, pp. 181186, 2003.Google Scholar
8. Gaspar, J., Chu, V., and Conde, J.P., J. Appl. Phys., in press, June 2003.Google Scholar
9.See for example, Cleland, A. N., Foundation of Nanomechanics – From Solid-State Theory to Device Applications. Springer, New York, 2004.Google Scholar
10. Newell, William E., Science 161, pp. 13201326, 1968.Google Scholar
11. Yang, J., Ono, T., and Esashi, M., J. Microelectromech. Syst. 11, pp. 775783, 2002.Google Scholar
12. Zhang, L. M., Uttamchandani, D., and Culshaw, B., Sens. Act. 29, pp. 7984, 1991.Google Scholar
13. Lifschitz, R., and Roukes, M. L., Phys. Rev. B 61, pp. 56005609, 2000.Google Scholar
14. Fabian, J., and Allen, P.B., Phys.Rev.Lett. 79, pp. 18851888, 1997.Google Scholar
15. Nakhmanson, S., and Drabold, D. A., Phys. Rev. B 61, pp. 53765380, 2000.Google Scholar
16. Yasumura, K. Y., Stowe, T. D., Chow, E. M., Pfafman, T., Kenny, T. W., Stipe, B.C., and Rugar, D., J. Microelectromech. Syst. 9, pp. 117125.Google Scholar