Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-17T21:52:19.786Z Has data issue: false hasContentIssue false

PbS Nanocrystal “Plasma-Polymerization”

Published online by Cambridge University Press:  26 February 2011

Ludovico Cademartiri
Affiliation:
lcademar@chem.utoronto.ca, University of Toronto, Chemistry, 80, St. George Street, Toronto, ON, M5S 3H6, Canada, 1-416-9786722, 1-416-9712011
Georg von Freymann
Affiliation:
georg.freymann@physik.uni-karlsruhe.de, Universität Karlsruhe, Institut für Angewandte Physik, Germany
Andre C. Arsenault
Affiliation:
aarsenau@chem.utoronto.ca, University of Toronto, Chemistry, Canada
Jacopo Bertolotti
Affiliation:
bertolotti@lens.unifi.it, European Laboratory for Non-linear Spectroscopy (LENS) and INFM-Matis, Italy
Diederik S. Wiersma
Affiliation:
wiersma@lens.unifi.it, European Laboratory for Non-linear Spectroscopy (LENS) and INFM-Matis, Italy
Vladimir Kitaev
Affiliation:
vkitaev@wlu.ca, Wilfrid Laurier University, Chemistry, Canada
Geoffrey A. Ozin
Affiliation:
gozin@chem.utoronto.ca, University of Toronto, Chemistry, Canada
Get access

Abstract

We here demonstrate the use of semiconductor chalcogenide nanocrystals as single-source precursors for the one-step formation of flexible functional films. By taking advantage of the surface chemistry of these “zero-dimensional” building blocks we obtain close-packed three-dimensional arrays of nanocrystals interconnected by oxide sheaths. The films are obtained by exposing oxidation-resistant nanocrystals to an air plasma treatment. This treatment does not significantly influence the photoluminescence efficiency of the individual nanocrystal building blocks but confers them resilience to bending as well as resistance to acidic environments, hot solvents, annealing, and UV irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nenadovic, M.T., Rajh, T., and Micic, O.I., J. Phys. Chem., 89(3): p. 397–9. (1985); N.F. Borrelli and D.W. Smith, J. Non-Cryst. Solids, 180(1): p. 25–31. (1994); A. Lipovskii, E. Kolobkova, V. Petrikov, I. Kang, A. Olkhovets, et al., Appl. Phys. Lett., 71(23): p. 3406–3408. (1997); A.A. Lipovskii, E.V. Kolobkova, A. Olkhovets, V.D. Petrikov, and F. Wise, Physica E, 5(3): p. 157–160. (1999).Google Scholar
2 Hines, M.A. and Scholes, G.D., Adv. Mater., 15(21): p. 18441849. (2003); C.B. Murray, S. Sun, W. Gaschler, H. Doyle, T.A. Betley, et al., IBM J. Res. Dev., 45(1): p. 47–56. (2001).Google Scholar
3 Talapin, D.V. and Murray, C.B., Science, 310(5745): p. 8689. (2005).Google Scholar
4 Zhao, X., Gorelikov, I., Kumacheva, E., Musikhin, S., Cauchi, S., et al. , Langmuir, 21(3): p. 10861090. (2005); L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, E.H. Sargent, et al., Adv. Mater., 17(15): p. 1854–1857. (2005).Google Scholar
5 Wise, F.W., Acc. Chem. Res., 33(11): p. 773780. (2000).Google Scholar
6 Sargent, E.H., Adv. Mater., 17(5): p. 515. (2005).Google Scholar
7 Schaller, R.D. and Klimov, V.I., Phys. Rev. Lett, 92(18): p. 186601–1. (2004); R.J. Ellingson, M.C. Beard, O.I. Micic, A.J. Nozik, J.C. Johnson, et al., Nano Lett., 5(5): p. 865–871. (2005).Google Scholar
8 Steckel, J.S., Coe-sullivan, S., Bulovic, V., and Bawendi, M.G., Adv. Mater., 15(21): p. 18621866. (2003).Google Scholar
9 Tessler, N., Medvedev, V., Kazes, M., Kan, S., and Banin, U., Science, 295(5559): p. 15061508. (2002); H.Y. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, et al., Science, 304(5670): p. 567–571. (2004); J.L. Mohanan, I.U. Arachchige, and S.L. Brock, Science, 307: p. 397. (2005); Y. Chan, J.S. Steckel, P.T. Snee, J.-M. Caruge, J.M. Hodgkiss, et al., Appl. Phys. Lett., 86: p. 073102. (2005); J. Rodriguez-Viejo, K.F. Jensen, H. Mattoussi, J. Michel, B.O. Dabbousi, et al., Appl. Phys. Lett., 70(16): p. 2132–2134. (1997); M.A. Petruska, A.V. Malko, V.I. Klimov, and P.M. Voyles, Adv. Mater., 15(7-8): p. 610–613. (2003).Google Scholar
10 Cademartiri, L., von Freymann, G., Arsenault, A.C., Bertolotti, J., Wiersma, D.S., et al. , Small, 1(12): p. 11841187. (2005).Google Scholar
11 Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc., 115(19): p. 8706–15. (1993).Google Scholar
12 Joo, J., Na, H.B., Yu, T., Yu, J.H., Kim, Y.W., et al. , J. Am. Chem. Soc., 125(36): p. 1110011105. (2003).Google Scholar
13 Cademartiri, L., Bertolotti, J., Sapienza, R., Wiersma, D.S., Kitaev, V., et al. , submitted.Google Scholar
14 Murray, C.B., Kagan, C.R., and Bawendi, M.G., Science, 270(5240): p. 1335–8. (1995).Google Scholar
15 Inagaki, N., Plasma surface modification and plasma polymerization. 1996: Technomic Publishing Co. Google Scholar