Hostname: page-component-788cddb947-jbkpb Total loading time: 0 Render date: 2024-10-10T15:24:07.947Z Has data issue: false hasContentIssue false

Oxygen-Induced Reversible Structural Change of Supported fine Silver Particles Observed by In Situ Optical Absorption and X-ray Diffraction

Published online by Cambridge University Press:  28 February 2011

Akihisa Yanase
Affiliation:
The University of Tokyo, Dept. of Chemical Engineering, Hongo, Bunkyo-ku, Tokyo 113, Japan
Hiroshi Komiyama
Affiliation:
The University of Tokyo, Dept. of Chemical Engineering, Hongo, Bunkyo-ku, Tokyo 113, Japan
Kazunobu Tanaka
Affiliation:
Electrotechnical Laboratory, Umezono, Tsukuba-shi, Ibaraki 305, Japan
Get access

Abstract

In situ measurements of optical absorption and x-ray diffraction for small supported silver particles were performed under defined atmospheres at temperatures below 723 K. We found, for the first time, reversible changes both in optical absorption spectrum and lattice parameter of silver particles against the cyclic exchange of ambient gases between 5% H2/He and 1% 02/He. The present data indicate that the adsorption of oxygen results in a reduction in surface stress of silver particles, leading to a change in the shape of particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S. and Ichihashi, T., Phys. Rev. Lett. 56, 616, (1986).Google Scholar
2. Ajayan, P.M. and Marks, L.D., Phys. Rev. Lett. 63, 279, (1989).Google Scholar
3. Blik, H.F.J. van't, Zon, J.B.A.D. van, Huizinga, T., Vis, J.C., Koningsberger, D.C. and Prins, R., J. Am. Chem. Soc. 107, 3139, (1985).Google Scholar
4. Anno, E. and Hoshino, R., Surf. Sci. 144, 567, (1984).Google Scholar
5. Skillman, D.C. and Berry, C.R., J. Chem. Phys. 48, 3297, (1968).Google Scholar
6. Kennerly, S.W., Little, J.W., Warmack, R.J. and Ferrell, T.L., Phys. Rev. B 29, 2926, (1984).Google Scholar
7. Royer, P., Bijeon, J.L., Goudonnet, J.P., Inagaki, T. and Arakawa, E.T., Surf. Sci. 217, 384, (1989).Google Scholar
8. Yanase, A., Komiyama, H. and Tanaka, K., Surf. Sci. 226, L65, (1990).Google Scholar
9. Yanase, A. and Komiyama, H. (submitted).Google Scholar
10. Cohen, R.W., Cody, G.D., Coutts, M.D. and Abeles, B., Phys. Rev. B 8, 3689, (1973).Google Scholar
11. Seyedmonir, S.R., Strohmayer, D.E., Geoffroy, G.L., Vannice, M.A., Young, H.W. and Linowski, J.W., J. Catal. 87, 424, (1984).Google Scholar
12. Czanderna, A.W., J. Phys. Chem. 70, 2120, (1966).Google Scholar
13.Edited by Palik, E.D., Handbook of Optical Constants of Solids, (Academic Press, 1985).Google Scholar
14. Kreibig, U. and Genzel, L., Surf. Sci. 156, 678,(1985).Google Scholar
15.See, e.g., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972).Google Scholar
16. Vermaak, J.S. and Kuhlmann-Wilsdorf, D., J. Phys. Chem. 72, 4150, (1968).Google Scholar
17. Wasserman, H.J. and Vermaak, J.S., Surf. Sci. 22, 164, (1970).Google Scholar