Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T22:09:18.063Z Has data issue: false hasContentIssue false

Oxygen Reduction Reaction Electrocatalytic Activity of SAD-Pt/GLAD-Cr Nanorods

Published online by Cambridge University Press:  28 May 2012

Wisam J. Khudhayer
Affiliation:
Departments of Systems Engineering, University of Arkansas at Little Rock, Little Rock AR, 72204, USA
Nancy Kariuki
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439-4837, USA
Deborah J. Myers
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439-4837, USA
Ali U. Shaikh
Affiliation:
Departments of Chemistry, University of Arkansas at Little Rock, Little Rock AR, 72204, USA
Tansel Karabacak
Affiliation:
Departments of Applied Science, University of Arkansas at Little Rock, Little Rock AR, 72204, USA
Get access

Abstract

Nanorod arrays of chromium (Cr) were grown on glassy carbon (GC) electrodes by a dc magnetron sputtering glancing angle deposition (GLAD) technique. The Cr nanorods were used as low-cost, high surface area, metallic supports for a conformal layer of Pt thin film catalyst, as a potential low-loading electrocatalyst for the oxygen reduction reaction (ORR) in polymer electrolyte membrane (PEM) fuel cells. A dc magnetron sputtering small angle deposition (SAD) technique was utilized for a conformal coating of Pt on Cr nanorods. The ORR activity of SAD-Pt/GLAD-Cr electrodes was investigated using cyclic voltammetry (CV) and rotating-disk electrode (RDE) techniques in a 0.1 M HClO4 solution at room temperature. A reference sample consisting of GLAD Cr nanorods coated with a Pt thin film deposited at normal incidence (θ = 0o) was prepared and compared with the SAD-Pt/GLAD-Cr nanorods. Compared to GLAD Cr nanorods coated with Pt thin film at θ = 0o, the SAD-Pt/GLAD-Cr nanorod electrode exhibited higher ECSA and area-specific and mass-specific ORR activity. These results indicate that the growth of catalyst layer on the base-metal nanorods by the SAD technique provides a more conformal and possibly a nanostructured coating, significantly enhancing the catalyst utilization.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gasteiger, H. A., Kocha, S. S., Sompalli, B., Wagner, F. T., Applied Catalysis B: Environmental 56, 935 (2005).Google Scholar
2. Zhang, J., “PEM fuel cell electrocatalysts and catalyst layer: fundamentals and applications”, Springer-Verlag London Limited, 2008.Google Scholar
3. Tang, H., Qi, Z. G., Ramani, M., Elter, J. F., J. Power Sources 158, 1306 (2006).Google Scholar
4. Qiao, J. L., Saito, M., Hayamizu, K., Okada, T., J. Electrochem. Soc. 153, A967 (2006).Google Scholar
5. Debe, M. K., Schmoeckel, A. K., Hendricks, S. M., Vernstrom, G. D., Haugen, G. M. and Atanasoski, R. T., ECS Transactions 1 (8), 5166 (2006).Google Scholar
6. Bonakdarpour, A., Fleischauer, M. D., Brett, M. J., Dhan, J. R., Applied Catalysis A: General 349, 110115 (2008).Google Scholar
7. Gasda, M. D., Eisman, G. A., Gall, D., Journal of Electrochemical Society 157 (1), B71-B76 (2010).Google Scholar
8. Gasda, M. D., Eisman, G. A., Gall, D., Journal of Electrochemical Society 157 (1), B113-B117 (2010).Google Scholar
9. Gasda, M. D., Eisman, G. A., Gall, D., Journal of Electrochemical Society 157 (3), B437-B440 (2010).Google Scholar
10. Khudhayer, W. J., Shaikh, Ali U., and Karabacak, Tansel, Advanced Science Letters 4, 35513559, 2011.Google Scholar
11. Khudhayer, W. J., Kariuki, Nancy, Wang, Xiaoping, Myers, Deborah J., Shaikh, Ali U., and Karabacak, Tansel, Journal of Electrochemical Society 158 (8), B1029-B1041 (2011).Google Scholar
12. Karabacak, T. and Lu, T.-M., in Handbook of Theoretical and Computational Nanotechnology, edited by Rieth, M. and Schommers, W. (American. Scientific Publishers, Stevenson Ranch, CA, 2005), chap. 69, p. 729.Google Scholar
13. Karabacak, T., Wang, G.-C., and Lu, T.-M., J. Vac. Sci. Technol. A 22, 1778 (2004).Google Scholar
14. Karabacak, T. and Lu, T.-M., J. Appl. Phys. 97, 124504 (2005).Google Scholar
15. Karabacak, T. and Lu, T.-M., U.S. Patent No: 7,244,670, Jul 17 (2007).Google Scholar
16. Dolatshahi-Pirouz, A., Jensen, T., Vorup-Jensen, T., Bech, Rikke, Chevallier, J., Besenbacher, F., Foss, M., and Sutherland, D.S., Adv. Eng. Mater. 12, 899 (2010).Google Scholar
17. Klema, G. K. and Brett, M. J., J. of electrochemical Society 150, p. E342 (2003).Google Scholar
18. Moffat, T. P., Latanision, R. M., J Electrochem. Soc. 139, 18691879 (1992).Google Scholar
19. Bojinov, M., Fabricius, G., Laitinen, T., Saario, T., Sundholm, G., Electrochim. Acta 44, 247261 (1998).Google Scholar
20. Maurice, V., Yang, W. P., Marcus, P., J Electrochem. Soc. 141, 30163027 (1994).Google Scholar
21. Gerretsen, J. H., De Wit, J. H. W., Corrosion Sci. 30, 10751084 (1990).Google Scholar
22. Mukerjee, S., and Srinivasan, S., J. Electroanal. Chem. 357, 201224 (1993).Google Scholar
23. Stamenkovic, V., Schmidt, T. J., Ross, P. N., and Markovic, N. M., J. Phys. Chem. B 106, 1197011979 (2002).Google Scholar
24. Stamenkovic, V. V., Schmidt, T. J., Ross, P. N., and Markovic, N. M., J. of Electroanalytical Chemistry 554-555, 191199 (2003).Google Scholar
25. Mayrhofer, K. J. J., Blizanac, B. B., Arenz, M., Stamenkovic, V. R., Ross, P. N., and Markovic, N. M., J. Phys. Chem. B 109, 1443314440 (2005).Google Scholar
26. Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G., Ross, P. N., and Markovic, N. M., Nature Materials 6, 241247 (2007).Google Scholar