Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T07:27:59.287Z Has data issue: false hasContentIssue false

Orientation Effect on the Stress Response by Strain-Rate Change at 400K in Ni3Al Single Crystals

Published online by Cambridge University Press:  10 February 2011

M. Demura
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
T. Hirano
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Get access

Abstract

Cyclic strain-rate change tests were performed by using binary, stoichiometric Ni3Al single crystalline specimens with different tensile orientations at 400 K. In all the specimens, the flow stress was independent of strain rate in steady state and exhibited a temporary change by the strain-rate change. The characteristics of the temporary stress change, the initial stress change and transient time, were independent of orientation. Based on the multiplication-immobilization model, we concluded that the immobilization mechanism, the Kear-Wilsdorf locking mechanism, is independent of orientation in binary, stoichiometric Ni3Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bonneville, J. and Martin, J. L. in High- Temperature Ordered Intermetallic Alloys IV, edited by L. A. Johnson, D. P. Pope, and J. O. Stiegler (Mater. Res. Soc. Proc. 213, Pittsburgh, PA, 1991) 629 (1991).Google Scholar
2. Ezz, S. S. and Hirsch, P. B., Phil. Mag. A, 69, 105 (1994).CrossRefGoogle Scholar
3. Vitek, V. and Sodani, Y., Scr. metall. mater., 25, 939 (1991).CrossRefGoogle Scholar
4. Hirsch, P. B., Scr. Metall. Mater., 25, 1725 (1991).CrossRefGoogle Scholar
5. Khantha, M., Cserti, J. and Vitek, V., Scr. Metall. Mater., 27,481 (1992).CrossRefGoogle Scholar
6. Hirsch, P. B., Phil. Mag. A, 65, 569 (1992).CrossRefGoogle Scholar
7. Demura, M. and Hirano, T., Phil. Mag. Let., 75, 143 (1997).CrossRefGoogle Scholar
8. Demura, M. and Hirano, T. in High- Temperature Ordered Intermetallic Alloys VII, edited by C. C. Koch, C. T. Liu, N. S. Stoloff, and A. Wanner (Mater. Res. Soc. Proc. 460, Pittsburgh, PA, 1997) 549 (1997).Google Scholar
9. Pope, D. P. and Ezz, S. S., International Metals Reviews, 29, 136 (1984).CrossRefGoogle Scholar
10. Hirano, T., Acta metall. mater., 38, 2667 (1990).CrossRefGoogle Scholar
11. Golberg, D., Demura, M. and Hirano, T., J. Crystal Growth, 186, 624 (1998).CrossRefGoogle Scholar
12. Louchet, E., Phil. Mag. A, 72, 905 (1995).CrossRefGoogle Scholar
13. Kear, H. and Wilsdorf, G. F., Trans. AIME, 224, 382 (1962).Google Scholar
14. Takeuchi, S. and Kuramoto, E., Acta Metall., 21, 415 (1973).CrossRefGoogle Scholar
15. Paidar, V., Pope, D. P. and Vitek, V., Acta metall., 32, 435 (1984).CrossRefGoogle Scholar
16. Golberg, D., Demura, M. and Hirano, T., Scr. Mater., 37, 1777 (1997).CrossRefGoogle Scholar
17. Golberg, D., Demura, M. and Hirano, T., Acta mater., 46, 2695 (1998).CrossRefGoogle Scholar
18. Kuramoto, E. and Pope, D. P., Acta Metall., 26, 207 (1978).CrossRefGoogle Scholar
19. Lall, C., Chin, S. and Pope, D. P., Metall. Trans. A, 1OA, 1323 (1979).CrossRefGoogle Scholar
20. Umakoshi, Y., Pope, D. P. and Vitek, V., Acta metall., 32, 449 (1984).CrossRefGoogle Scholar