Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T00:03:36.781Z Has data issue: false hasContentIssue false

Optoelektronic Properties of CuGaSe2 Thin Films Studied by Time-resolved Microwave Conductivity

Published online by Cambridge University Press:  01 February 2011

A. Meeder
Affiliation:
Hahn-Meitner-Institut GmbH, Glienicker Str. 100, 14109 Berlin, Germany
D. Fuertes Marrón
Affiliation:
Hahn-Meitner-Institut GmbH, Glienicker Str. 100, 14109 Berlin, Germany
M. Ch. Lux-Steiner
Affiliation:
Hahn-Meitner-Institut GmbH, Glienicker Str. 100, 14109 Berlin, Germany
M. Kunst
Affiliation:
Hahn-Meitner-Institut GmbH, Glienicker Str. 100, 14109 Berlin, Germany
Get access

Abstract

Applying the (contactless) time-resolved microwave conductivity technique (TRMC) to CVD- and PVD-grown device grade CuGaSe2 thin films experimental data of hole mobility and lifetime are obtained. TRMC data of stoichiometric and Gallium-rich, front and back side illuminated thin films are presented. In the Gallium-rich samples an extended decay over several orders of magnitude is observed. In the stoichiometric samples the majority of excess carriers decays nearly instantaneously. Differences in charge carrier transport at the front and the back side are discussed in the framework of a two layer defect model, previously reported in such absorber layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hanna, G., Jasaneck, A., Rau, U., Schock, H. W., Thin Solid Films 387 (2001) 71.Google Scholar
[2] Nadenau, V., Rau, U., Jasenek, A. and Schock, H. W., J. Appl. Phys. 87 (1) (2000) 594 (Part I+II).Google Scholar
[3] Meeder, A., Marrón, D. Fuertes, Rumberg, A., Lux-Steiner, M. Ch., Chu, V., Conde, J. P., J. Appl. Phys. 92 (7) (2002) 3016.Google Scholar
[4] Meeder, A., Weinhardt, L., Stresing, D., Marrón, D. Fuertes, Würz, R., Babu, S. M., Schedel-Niedrig, Th., Lux-Steiner, M. Ch., Heske, C., Umbach, E., J. Phys. Chem. Solids (2003) in press.Google Scholar
[5] Meyer, Th., Engelhardt, F., Parisi, J. and Rau, U., J. Appl. Phys. 91 (8) (2002) 5093.Google Scholar
[6] Swiatkowsli, C. and Kunst, M., Appl. Phys. A 61 (1995) 6.Google Scholar
[7] Meeder, A., Marrón, D. Fuertes, Tezlevan, V., Arushanov, E., Rumberg, A., SchedelNiedrig, T. and Ch, M., Lux-Steiner, Thin Solid Films 431-432 (2003) 214.Google Scholar
[8] Patent Nr. DE 198 55 021 C1.Google Scholar
[9] Schuler, S., Nishiwaki, S., Dziedzina, M., Klenk, R., Siebentritt, S. amd Lux-Steiner, M. Ch., Procc. MRS 2001, San Francisco.Google Scholar
[10] Jasenek, A., Rau, U., Nadenau, V., Thiess, D., Schock, H. W., Thin Solid Films 361-362 (2000) 415.Google Scholar
[11] total area efficiency, unpublished results.Google Scholar
[12] Swiatkowski, C., Sanders, A., Buhre, K. O. and Kunst, M., J. Appl. Phys. 78 (1995) 1763.Google Scholar
[13] Herm, D., Aichberger, S. v. and Kunst, M., Sol. En. Mat. a. Sol. Cells, 66 (2001) 195.Google Scholar
[14] Haffner, C. M. and Kunst, M., Chem. Phys. Lett. 211 (1993) 203.Google Scholar
[15] Schön, J. H., Baumgartner, F. P., Arushanov, E., Riati-Nejad, H., Kloc, Ch. and Bucher, E., J. Appl. Phys. 79, (1996) 6961.Google Scholar
[16] Schuler, S., Nishiwaki, S., Beckmann, J., Rega, J., Brehme, S., Siebentritt, S. and Lux-Steiner, M. Ch., in 29th IEEE Photovoltaic Specialist Conference, IEEE New Orleans (2002).Google Scholar