Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-gctlb Total loading time: 0.273 Render date: 2022-07-03T01:08:51.130Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Optimized Hot-forming of an Intermetallic Multi-phase γ-TiAl Based Alloy

Published online by Cambridge University Press:  29 November 2012

Andrea Gaitzenauer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben, Austria
Martin Müller
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben, Austria
Helmut Clemens
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben, Austria
Patrick Voigt
Affiliation:
Titanium Solutions GmbH, D-28195 Bremen, Germany
Robert Hempel
Affiliation:
Titanium Solutions GmbH, D-28195 Bremen, Germany
Svea Mayer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben, Austria
Get access

Abstract

A robust processing route at low cost is an essential requirement for high-temperature materials used in automotive engines. Because of their excellent high-temperature properties, their low density, high elastic modulus as well as high specific strength, intermetallic γ-TiAl based alloys are potential candidates for application in advanced automotive turbochargers. So-called 3rd generation alloys, such as TNM™ alloys with a nominal composition of Ti-43.5Al-4Nb-1Mo-0.1B (in at%), are multi-phase alloys consisting of γ-TiAl, α2-Ti3Al and a low volume fraction of βo-TiAl phase. In this paper a novel hot-processing route, which is a combination of a one-shot hot-forging step and a controlled cooling treatment, leads to mechanical properties required for turbocharger turbine wheels. The observed strength can be attributed to the small lamellar spacing within the α2/γ colonies of the nearly lamellar microstructure. In order to analyze the microstructure and the prevailing phase fractions microscopic examinations and X-ray diffraction measurements were conducted. The mechanical properties were determined by hardness measurements as well as tensile and creep tests. The evolution of the microstructure during the hot-forming process is described and its relation to the obtained mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reduction of pollutant emissions from light vehicles, http://europa.eu/legislation_summaries/environment/air_pollution/l28186_en.htm.
Tetsui, T., Advanced Engineering Materials 3, 307 (2001).10.1002/1527-2648(200105)3:5<307::AID-ADEM307>3.0.CO;2-33.0.CO;2-3>CrossRef
Baur, H., Wortberg, D.B. and Clemens, H., in Gamma Titanium Aluminides 2003, edited by Kim, Y.-W., Dimiduk, D. M. and Loretto, M. H., (TMS, Warrendale, PA, 2003), pp. 23–31.Google Scholar
Clemens, H., Schloffer, M., Schwaighofer, E., Werner, R., Gaitzenauer, A., Rashkova, B., Schmoelzer, T., Pippan, R., and Mayer, S., these proceedings.
Clemens, H. and Mayer, S., Advanced Engineering Materials, DOI: 10.10002/adem.201200231.10.10002/adem.201200231CrossRef
Tetsui, T., in Gamma Titanium Aluminides 1999, edited by Kim, Y.-W., Dimiduk, D. M., Loretto, M. H., (TMS, Warrendale, PA, 1999), pp. 1523.Google Scholar
Noda, T., Intermetallics 6, 709 (1998).10.1016/S0966-9795(98)00060-0CrossRef
Tetsui, T., Intermetallics 9, 253 (2001).10.1016/S0966-9795(00)00129-1CrossRef
Gaitzenauer, A., Müller, M., Clemens, H., Voigt, P., Hempel, R., and Mayer, S., Berg- und Hüttenmännische Monatshefte 8-9, 319 (2012).10.1007/s00501-012-0024-9CrossRef
Kremmer, S., Chladil, H., Clemens, H., Otto, A., and Güther, V., in Ti-2007 Science and Technology, (JIM, Sendai, Japan, 2008) pp. 989992.Google Scholar
Wallgram, W., Schmoelzer, T., Cha, L., Das, G., Güther, V., and Clemens, H., International Journal of Materials Research 100, 1021 (2009).10.3139/146.110154CrossRef
Clemens, H., Wallgram, W., Kremmer, S., Güther, V., Otto, A., and Bartels, A., Advanced Engineering Materials 10, 707 (2008).CrossRef
Appel, F., Paul, J.D.H. and Oehring, M., “Gamma Titanium Aluminides Alloys- Science and Technology”, (WILEY-VCH Verlag, Weinheim, 2011).CrossRefGoogle Scholar
Schloffer, M., Schmoelzer, T., Mayer, S., Schwaighofer, E., Hawranek, G., Schimansky, F.-P., Pyczak, F., and Clemens, H., Practical Metallography 48, 594 (2011).10.3139/147.110138CrossRef
Cha, L., Clemens, H. and Dehm, G., International Journal of Materials Research 102, 703 (2011).10.3139/146.110526CrossRef
Watson, I.J., Liss, K.-D., Clemens, H., Wallgram, W., Schmoelzer, T., Hansen, T. C., and Reid, M., Advanced Engineering Materials 11, 932 (2009).10.1002/adem.200900169CrossRef
Schloffer, M., Leitner, T., Clemens, H., Mayer, S., and Pippan, R., Intermetallics, in preparation.
Cao, G., Fu, L., Lin, J., Zhang, Y., and Chen, C., Intermetallics 8, 647 (2000).10.1016/S0966-9795(99)00128-4CrossRef
Appel, F. and Wagner, R., Materials Science and Engineering: R: Reports 22, 187 (1998).CrossRef
Chatterjee, A., Clemens, H., Mecking, H., Dehm, G., and Arzt, E., International Journal of Materials Research (formerly Zeitschrift für Metallkunde) 92, 1000 (2001).
Simas, P., Schmoelzer, T., , M.L., Clemens, H., and San Juan, J., in Materials Research Society Symposium Proceedings 2011, edited by Palm, M., Bewlay, B. P., Kumar, K. S., and Yoshimi, K. (MRS, Warrendale, PA, 2011), pp. 139144.Google Scholar
Wang, J.G. and Nieh, T.G., Intermetallics 8, 737 (2000).10.1016/S0966-9795(00)00009-1CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optimized Hot-forming of an Intermetallic Multi-phase γ-TiAl Based Alloy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Optimized Hot-forming of an Intermetallic Multi-phase γ-TiAl Based Alloy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Optimized Hot-forming of an Intermetallic Multi-phase γ-TiAl Based Alloy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *