Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T10:55:01.486Z Has data issue: false hasContentIssue false

Optical Interconnect Technologies based on Silicon Photonics

Published online by Cambridge University Press:  10 August 2011

Wim Bogaerts
Affiliation:
Ghent University – imec, Department of Information Technology, Photonics Research Group, Sint-Pietersnieuwstraat 41 9000 Gent, Belgium
Philippe Absil
Affiliation:
imec Belgium, Kapeldreef 75 3001 Leuven, Belgium
Dries Van Thourhout
Affiliation:
Ghent University – imec, Department of Information Technology, Photonics Research Group, Sint-Pietersnieuwstraat 41 9000 Gent, Belgium
Joris Van Campenhout
Affiliation:
imec Belgium, Kapeldreef 75 3001 Leuven, Belgium
Shankar Kumar Selvaraja
Affiliation:
Ghent University – imec, Department of Information Technology, Photonics Research Group, Sint-Pietersnieuwstraat 41 9000 Gent, Belgium
Pieter Dumon
Affiliation:
Ghent University – imec, Department of Information Technology, Photonics Research Group, Sint-Pietersnieuwstraat 41 9000 Gent, Belgium
Hui Yu
Affiliation:
Ghent University – imec, Department of Information Technology, Photonics Research Group, Sint-Pietersnieuwstraat 41 9000 Gent, Belgium
Adil Masood
Affiliation:
Ghent University – imec, Department of Information Technology, Photonics Research Group, Sint-Pietersnieuwstraat 41 9000 Gent, Belgium
Gunther Roelkens
Affiliation:
Ghent University – imec, Department of Information Technology, Photonics Research Group, Sint-Pietersnieuwstraat 41 9000 Gent, Belgium
Roel Baets
Affiliation:
Ghent University – imec, Department of Information Technology, Photonics Research Group, Sint-Pietersnieuwstraat 41 9000 Gent, Belgium
Get access

Abstract

We discuss the principles of Optical interconnects, and discuss the potential of silicon photonics to provide all the necessary building blocks to construct dense, high-bandwidth, lowpower optical links. We discuss waveguides, wavelength division multiplexing, modulators and photodetectors. We also take a look at the options for implementing light sources, a function which silicon cannot natively provide, with a focus on implementations in the IMEC silicon photonics platform.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Krishnamoorthy, A.V., Ho, R., Zheng, X., Schwetman, H., Lexau, J., Koka, P., Li, G., Shubin, I., and Cunningham, J.E., “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE, 2009, pp. 13371361.Google Scholar
[2] Barwicz, T., Byun, H., Gan, F., Holzwarth, C.W., a Popovic, M., Rakich, P.T., Watts, M.R., Ippen, E.P., Kärtner, F.X., Smith, H.I., Orcutt, J.S., Ram, R.J., Stojanovic, V., Olubuyide, O.O., Hoyt, J.L., Spector, S., Geis, M., Grein, M., Lyszczarz, T., and Yoon, J.U., “Silicon photonics for compact, energy-efficient interconnects [Invited],” Journal of Optical Networking, vol. 6, 2007, p. 63.Google Scholar
[3] Gunn, C., “CMOS Photonics for High-Speed Interconnects,” IEEE Micro, vol. 26, 2006, pp. 5866.Google Scholar
[4] Soref, R., “The Past, Present, and Future of Silicon Photonics,” J. Sel. Top. Quantum Electron., vol. 12, 2006, pp. 16781687.Google Scholar
[5] Bogaerts, W., Wiaux, V., Taillaert, D., Beckx, S., Luyssaert, B., Bienstman, P., and Baets, R.,“Fabrication of photonic crystals in {S}ilicon-on-insulator using 248-nm deep {UV} lithography,” IEEE J. Sel. Top. Quantum Electron., vol. 8, 2002, pp. 928934.Google Scholar
[6] Foresi, J.S., Black, M.R., Agarwal, A.M., and Kimerling, L.C., “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett., vol. 68, 1996, pp. 20522054.Google Scholar
[7] Selvaraja, S., Sleeckx, E., Schaekers, M., Bogaerts, W., Van Thourhout, D., Dumon, P., and Baets, R., “Low-Loss Amorphous Silicon-On-Insulator Technology for Photonic Integrated Circuitry,” Opt. Comm., vol. 282, 2009, pp. 17671770.Google Scholar
[8] Selvaraja, S.K., Jaenen, P., Bogaerts, W., Van Thourhout, D., Dumon, P., and Baets, R., “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193nm Optical Lithography,” J. Lightwave Technol., vol. 27, 2009, pp. 40764083.Google Scholar
[9] Spector, S.J., Geis, M.W., Lennon, D.M., Williamson, R.C., and Lyszczarz, T.M., “Hybrid multimode / single-mode waveguides for low loss,” Contract, 2004.Google Scholar
[10] Selvaraja, S.K., Bogaerts, W., Absil, P., Van Thourhout, D., and Baets, R., “Record Low-Loss Hybrid Rib/Wire Waveguides for Silicon Photonic Circuits,” Group IV Photonics, 2010. 6rd IEEE International Conference on, 2010, p. PD01.Google Scholar
[11] Prabhu, A.M., Tsay, A., Han, Z., and Van, V., “Ultracompact SOI Microring Add-Drop Filter With Wide Bandwidth and Wide FSR,” IEEE Photon. Technol. Lett., vol. 21, 2009, pp. 651653.Google Scholar
[12] Dumon, P., Bogaerts, W., Van Thourhout, D., Taillaert, D., Wiaux, V., Beckx, S., Wouters, J., and Baets, R., “Wavelength-selective components in {SOI} photonic wires fabricated with deep {UV} lithography,” Conference on Group IV Photonics, Hong Kong: 2004, p. WB5.Google Scholar
[13] Bogaerts, W., Selvaraja, S.K., Dumon, P., Brouckaert, J., De Vos, K., Van Thourhout, D., and Baets, R., “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” J. Sel. Top. Quantum Electron., vol. 16, 2010, pp. 3344.Google Scholar
[14] Brouckaert, J., Bogaerts, W., Selvaraja, S., Dumon, P., Baets, R., and Van Thourhout, D., “Planar Concave Grating Demultiplexer with High Reflective Bragg Reflector Facets,” IEEE Photon. Technol. Lett., vol. 20, 2008, pp. 309311.Google Scholar
[15] Reed, G.T., Mashanovich, G., Gardes, F.Y., and Thomson, D.J., “Silicon optical modulators,” Nature Photonics, vol. 4, 2010, pp. 518526.Google Scholar
[16] Soref, R. and Bennett, B., “Electrooptical effects in silicon,” J. Quantum Electron., vol. 23, 1987, pp. 123129.Google Scholar
[17] Green, W.M.J., Rooks, M.J., Sekaric, L., and Vlasov, Y.A., “Ultra-compact, low RF power, 10 gb/s silicon Mach-Zehnder modulator,” Opt. Express, vol. 15, Dec. 2007, pp. 1710617113.Google Scholar
[18] Liao, L., Liu, A., Basak, J., Nguyen, H., Paniccia, M., Rubin, D., Chetrit, Y., Cohen, R., and Izhaky, N., “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett., vol. 43, 2007.Google Scholar
[19] Liao, L., Samara-Rubio, D., Morse, M., Liu, A., Hodge, D., Rubin, D., Keil, U., and Franck, T., “High speed silicon Mach-Zehnder modulator,” Opt. Express, vol. 13, Apr. 2005, pp. 31293135.Google Scholar
[20] Alloatti, L., Korn, D., Hillerkuss, D., Vallaitis, T., Li, J., Bonk, R., Palmer, R., Schellinger, T., Koos, C., Freude, W., Leuthold, J., Fournier, M., Fedeli, J., Barklund, A., Dinu, R., Wieland, J., Bogaerts, W., Dumon, P., and Baets, R., “Silicon high-speed electro-optic modulator,” Group IV Photonics (GFP), 2010 7th IEEE International Conference on, 2010, pp. 195197.Google Scholar
[21] Ding, R., Baehr-Jones, T., Liu, Y., Bojko, R., Witzens, J., Huang, S., Luo, J., Benight, S., Sullivan, P., Fedeli, J.-M., Fournier, M., Dalton, L., Jen, A., and Hochberg, M., “Demonstration of a low V pi L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express, vol. 18, 2010, pp. 1561815623.Google Scholar
[22] Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J., and Lipson, M., “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express, vol. 15, Jan. 2007, pp. 430436.Google Scholar
[23] Chen, L. and Lipson, M., “Ultra-low capacitance and high speed germaniumphotodetectors on silicon,” Opt. Express, vol. 17, 2009, pp. 79017906.Google Scholar
[24] Vivien, L., Rouvière, M., Fédéli, J.-M., Marris-Morini, D., Damlencourt, J.-F., Mangeney, J., Crozat, P., El Melhaoui, L., Cassan, E., Le Roux, X., Pascal, D., and Laval, S., “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express, vol. 15, Jul. 2007, pp. 98439848.Google Scholar
[25] Fang, A.W., Park, H., Cohen, O., Jones, R., Paniccia, M.J., and Bowers, J.E., “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express, vol. 14, 2006, pp. 92039210.Google Scholar
[26] Roelkens, G., Campenhout, J.V., Brouckaert, J., Thourhout, D.V., Baets, R., Romeo, P.R., Regreny, P., Kazmierczak, A., Seassal, C., Letartre, X., Hollinger, G., Fedeli, J.M., Cioccio, L.D., and Lagahe- Blanchard, C., “III-V/Si photonics by die-to-wafer bonding,” Materials Today, vol. 10, 2007, pp. 3643.Google Scholar
[27] Lamponi, M., Keyvaninia, S., Pommereau, F., Brenot, R., de Valicourt, G., Lelarge, F., Roelkens, G., Van Thourhout, D., Messaoudene, S., Fedeli, J.-M., and Duan, G.-H., “Heterogeneously integrated InP/SOI laser using double tapered single-mode waveguides through adhesive die to wafer bonding,” Group IV Photonics (GFP), 2010 7th IEEE International Conference on, 2010, pp. 2224.Google Scholar
[28] Van Campenhout, J., Rojo Romeo, P., Regreny, P., Seassal, C., Van Thourhout, D., Verstruyft, S., Di Ciocco, L., Fedeli, J.-M., Lagahe, C., and Baets, R., “Electrically pumped {InP}-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express, vol. 15, 2007, pp. 67446749.Google Scholar
[29] Van Campenhout, J., Liu, L., Romeo, P.R., Van Thourhout, D., Seassal, C., Regreny, P., Di Cioccio, L., Fedeli, J.-M., and Baets, R., “A Compact SOI-Integrated Multiwavelength Laser Source Based on Cascaded InP Microdisks,” IEEE Photon. Technol. Lett., vol. 20, 2008, pp. 13451347.Google Scholar