Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T10:58:04.775Z Has data issue: false hasContentIssue false

Optical Characterization of AlInP/GaAs Heterostructures

Published online by Cambridge University Press:  22 February 2011

F.G. Johnson
Affiliation:
The Institute of Optics, University of Rochester, Rochester, NY 14627
G.E. Kohnke
Affiliation:
The Institute of Optics, University of Rochester, Rochester, NY 14627
G.W. Wicks
Affiliation:
The Institute of Optics, University of Rochester, Rochester, NY 14627
Get access

Abstract

A 45 period GaAs/A10.54In0.46P superlattice was grown by molecular beam epitaxy using valved solid-sources to supply both the arsenic (As4) and the phosphorus (P2) group V fluxes. The room temperature optical transmission spectrum shows evidence of ground state excitons. Higher energy confined states are exhibited in photovoltage and photoreflectance spectra. Doublets corresponding to the m≈1 through m≈7 folded longitudinal-acoustic phonon modes are observed in the Raman spectrum. Analysis of these phonon doublets enables the structure of the superlattice to be determined. The interface roughness was found to be approximately 2 monolayers, and the layer thicknesses were determined to be 82 Å GaAs and 48 Å A10.54In0.46P.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhang, G., Nappi, J., Ovtchinnikov, A., and Asonen, H., Electron. Lett. 29, 429 (1993).CrossRefGoogle Scholar
2. Leier, H., Marten, A., Bachem, K.H., Pletschen, W., and Tasker, P., Electron. Lett. 29, 868 (1993).CrossRefGoogle Scholar
3. He, X. and Razeghi, M., Appl. Phys. Lett. 62, 618 (1993).CrossRefGoogle Scholar
4. Lee, H.Y., Hafich, M.J., Robinson, G.Y., Mahalingham, K., and Otsuka, N., J. Cryst. Growth 111, 525 (1991).CrossRefGoogle Scholar
5. Johnson, F.G., Wicks, G.W., Viturro, R.E., and LaForce, R., Mater. Res. Soc. Proc. 281, 49 (1993).CrossRefGoogle Scholar
6. Pollak, F.H. and Glembocki, O.J., Proc. SPIE 946, 2 (1988).CrossRefGoogle Scholar
7. Blood, P., Semicond. Sci. Technol. 1, 7 (1986).CrossRefGoogle Scholar
8. Tsu, R., Kawamura, H., and Esaki, L., in Proceedings of the 11th International Conference on the Physics of Semiconductors, edited by Miasek, M. (P.W.N. Polish Scientific, Warsaw, 1972), Vol. 2, pp. 11351141.Google Scholar
9. Wicks, G.W., Proc. SPIE 1037, 30 (1988).CrossRefGoogle Scholar
10. Colvard, C., Gant, T.A., Klein, M.V., Merlin, R., Fischer, R., Morkoc, H., and Gossard, A.C., Phys. Rev. B 31, 2080 (1985).CrossRefGoogle Scholar
11. Jusserand, B., Paquet, D., Mollot, F., Alexandre, F., and Roux, G. Le, Phys. Rev. B 35, 2808 (1987).CrossRefGoogle Scholar
12. He, J., Djafari-Rouhani, B., and Sapriel, J., Phys. Rev. B 37, 4086 (1988).CrossRefGoogle Scholar
13. Kushibe, H., Nakayama, M., and Yokota, M., Phys. Rev. B 47, 9566 (1993).CrossRefGoogle Scholar
14. Jusserand, B., Alexandre, F., Paquet, D., and Roux, G. Le, Appl. Phys. Lett. 47, 301 (1985).CrossRefGoogle Scholar
15. Houghton, D.C., Lockwood, D.J., Dharma-Wardana, M.W.C., Fenton, E.W., Baribeau, J.M., and Denhoff, M.W., J. Cryst. Growth 81, 434 (1987).CrossRefGoogle Scholar