Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T08:01:13.509Z Has data issue: false hasContentIssue false

Optical Band Gap Measurements of InN Films in the Strong Degeneracy Limit

Published online by Cambridge University Press:  11 February 2011

D. B. Haddad
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
J. S. Thakur
Affiliation:
Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202
V. M. Naik
Affiliation:
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128
G. W. Auner
Affiliation:
Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202
R. Naik
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
L. E. Wenger
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
Get access

Abstract

The optical properties of InN thin films (0.5 μm thick) grown on sapphire substrates by plasma source molecular beam epitaxy deposition have been measured in order to study the effect of electron degeneracy on the band gap measurement. X-ray diffraction measurements show that the films are wurtzite polycrystalline at a growth temperature of 325 °C, whereas a completely c-axis textured growth at a temperature of 475°C. The Raman bands A1 (LO) and E2 are rather broad indicating the presence of a large number of structural defects. Hall effect measurements show that both the films are n-type with carrier concentrations of (8.0 ± 1.6) × 1020 cm−3 and (3 ± 0.6) × 1020cm−3, respectively. The optical absorption data on these samples show n dependent band gap edge and a peak corresponding to plasmon due to strong electron degeneracy. The band gap absorption data were analyzed assuming a direct band gap and incorporating the Moss-Burstein shift effect. By taking into account the non-parabolic dispersion and the band-renormalization effects for the conduction band of InN, the calculated true band gap (0.7 eV) agrees with other recent measurements on high quality InN films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46, 3432 (1975).Google Scholar
2. Tansley, T.L. and Foley, C.P., J. Appl. Phys. 59, 3241 (1986).Google Scholar
3. Ikuta, K., Inoue, Y., Takai, O., Thin Solid Films 334, 49 (1998).Google Scholar
4. Inushima, T., Mamutin, V.V., Vekshin, V.A., Ivanov, S.V., Sakon, T., Motokawa, M., and Ohoya, S., J. Crystal Growth 227–228, 481 (2001).Google Scholar
5. Davydov, V. Yu, Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmüller, J., Harima, H., Mudryi, A.V., Aderhold, J., Semchinova, O., and Graul, J., Phys. Stat. Sol. (b) 229, R1 (2002).Google Scholar
6. Davydov, V. Yu, Klochikhin, A.A., Emtsev, V.V., Ivanov, S.V., Vekshin, V.V., Bechstedt, F., Furthmüller, J., Harima, H., Mudryi, A.V., Hashimoto, A., Yamamoto, A., Aderhold, J., Graul, J., and Haller, E.E., Phys. Stat. Sol. (b) 230, R4 (2002).Google Scholar
7. Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., Saito, Y., and Nanishi, Y., Appl. Phys. Lett. 80, 3967 (2002).Google Scholar
8. Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., and Kurimoto, E., Appl. Phys. Lett. 81, 1246 (2002).Google Scholar
9. Persson, C., Ahuja, R., da Silva, A. F., and Johansson, B., J. Phys. Cond. Matter 13, 8945 (2001).Google Scholar
10. Tyagai, V.A., Evstigneev, A.M., Krasiko, A.N., Andreeva, A.F., and Malakhov, V. Ya, Sov. Phys. Semicond. 11, 1257 (1977).Google Scholar
11. Wu, J., Walukiewicz, W., Shan, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., and Schaff, W.J., Phys. Rev. B. 66, 201403 (2002).Google Scholar
12. Auner, G.W., Lenane, T.D., Ahmad, F., Naik, R., Kuo, P.K., and Wu, Z.L., in Wide Band Gap Electronic Materials, (Academic, New York, 1995), p. 329.Google Scholar
13. Naik, V.M., Weber, W.H., Uy, D., Haddad, D., Naik, R., Danylyuk, Y.V., Lukitsch, M.J., Auner, G.W., and Rimai, L., Appl. Phys. Lett. 79, 2019 (2001).Google Scholar
14. Davydov, V. Yu, Emtsev, V.V., Goncharuk, I.N., Smirnov, A.N., Petrikov, V.D., Mamutin, V.V., Vekshin, V.A., Ivanov, V.S., Smirnov, M.B., and Inushima, T., Appl. Phys. Lett. 75, 3297 (1999).Google Scholar
15. Grille, H., Schnittler, Ch., and Bechstedt, F., Phys. Rev. B 61, 6091 (2000).Google Scholar
16. Bungaro, C., Rapcewicz, K., and Bernholc, J., Phys. Rev. B 61, 6720 (2000).Google Scholar
17. Dyck, J.S., Kim, K., Limpijumnong, S., Lambrecht, W.R.L., Kash, K., and Angus, J.C., Solid State Commun. 114, 355 (2000).Google Scholar
18. Varga, B.B., Phys. Rev. 137, A1896 (1965).Google Scholar
19. Hamberg, I. and Granqvist, C.G., J. Appl. Phys. 60, R123 (1986).Google Scholar
20. Kasic, A., Schubert, M., Saito, Y., Nanishi, Y., and Wagner, G., Phys. Rev. B 65, 115206 (2002).Google Scholar
21. Hall, L.H., Bardeen, J., and Blatt, F.J., Phys. Rev. 95, 559 (1954).Google Scholar
22. Moss, T.S., Proc. Phys. Soc. B 67, 775 (1954);Google Scholar
Burstein, E., Phys. Rev. 93, 632 (1954).Google Scholar