Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-kbzls Total loading time: 1.734 Render date: 2021-04-11T05:11:36.666Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Oligonucleotide Imprinting in Aqueous Environment

Published online by Cambridge University Press:  01 February 2011

Dolly Batra
Affiliation:
Department of Chemistry University of California, Irvine Irvine, CA 92697
Kenneth J. Shea
Affiliation:
Department of Chemistry University of California, Irvine Irvine, CA 92697
Get access

Abstract

The development of synthetic receptors that recognize nucleotide bases and their derivatives is an important area of research [1-3]. Applications are envisioned in separation science, biosensors, drug therapy and genetic engineering. Previously in this laboratory, we have developed a molecularly imprinted synthetic receptor for 9-ethyladenine (9-EA). The network polymer has an affinity for adenine and its derivatives with an average association constant (Ka) of 75,000 M–1 in CHCl3 [4]. When a 9-EA imprinted polymer was used as the chromatographic support, adenine eluted at 27 minutes using 92.5/5/0/2.5 CH3CN/H2O/CH3CO2H as the mobile phase, while cytosine, guanine and thymine derivatives all eluted close to the void volume (2.0 min). In addition, imprinted polymers have been made with complementary binding sites for cytosine and guanine [5], as well as other nucleotide base analogues [6].

The extension of these results to construct robust receptors for oligonucleotides requires fundamental changes in imprinting strategies. Most importantly, since oligonucleotides are water soluble, strategies that employ EGDMA/MAA formulations in organic solvents will need to be replaced with those that do not compromise the interactions between template (the oligo) and functional monomer.

Initially, the imprinting of a 2'-deoxyadenosine dimer (1) was attempted. Due to the hydrophilicity of a DNA oligomer, it was difficult to find a suitable organic solvent that would solubilize the oligomers without disrupting the template's interaction with the polymer matrix [7]. To combat the solubility problems and to insure the homogeniety of the polymerization solution, we examined various polymer formulations with organic and/or aqueous-based solvents that would dissolve the template without disrupting these key interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Sessler, J. L., Furuta, H., Kral, V., Supramol. Chem. 1, 209–20 (1993).CrossRefGoogle Scholar
2. Jorgensen, W. L., Chemtracts: Org. Chem. 2, 53–5 (1989).Google Scholar
3. Rebek, J. Jr, Chemtracts: Org. Chem. 1, 5960 (1988).Google Scholar
4. Spivak, D. A., Gilmore, M. A., Shea, K. J., J. Am. Chem. Soc. 119, 4388–93 (1997).CrossRefGoogle Scholar
5. Spivak, D. A., Shea, K. J., Macromolecules 31, 2160–5 (1998).CrossRefGoogle Scholar
6. Yano, K., Tanabe, K., Takeuchi, T., Matsui, J., Ikebukuro, K., Karube, I., Anal. Chim. Acta 363, 111–7 (1998).CrossRefGoogle Scholar
7. Spivak, D. A., Ph.D. Thesis. University of California, Irvine, Irvine, CA, (1995).Google Scholar
8. Beaucage, S. L., Iyer, R. P., Tetrahedron 48, 2223–311 (1992).CrossRefGoogle Scholar
9. Shuto, S., Kanazaki, M., Ichikawa, S., Minakawa, N., Matsuda, A., J. Org. Chem. 63, 746–54 (1998).CrossRefGoogle Scholar
10. Ellman, J. A., Mendel, D., Anthony-Cahill, S., Noren, C. J., Schultz, P. G., Methods Ensymol. 202, 301–37. (1991).CrossRefGoogle Scholar
11. Mathew, J., Buchardt, O., Bioconj. Chem. 6, 524–8 (1995).CrossRefGoogle Scholar
12. Shea, K. J., Stoddard, G. J., Shavelle, D. M., Wakui, F., Choate, R. M., Macromolecules 23, 4497–507 (1990).CrossRefGoogle Scholar
13. Hart, B. R., Ph. D. Thesis. University of California, Irvine, Irvine, CA, (2001).Google Scholar
14. Hocking, M. B., Klimchuk, K. A., Lowen, S., J. Polym. Sci., Part A: Polym. Chem. 38, 3128–45 (2000).3.0.CO;2-K>CrossRefGoogle Scholar
15. Sellergren, B., Shea, K. J., J. Chromatogr. A 690, 2939 (1995).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 11th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Oligonucleotide Imprinting in Aqueous Environment
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Oligonucleotide Imprinting in Aqueous Environment
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Oligonucleotide Imprinting in Aqueous Environment
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *