Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-28T06:36:05.770Z Has data issue: false hasContentIssue false

Ohmic Contacts to GaAs

Published online by Cambridge University Press:  15 February 2011

Norman Braslau*
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, (U.S.A.)
Get access

Abstract

The present capability of obtaining ohmic contacts to GaAs over a range of doping levels is reviewed. Possible models of transport across the metalsemiconductor interface are discussed and contact techniques are described. The widely used Au—Ge alloyed contact is seen to have a spatially inhomogeneous interface which appears to control its contact resistance. The most satisfactory process at this time is to alloy into a previously fabricated heavily doped layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Cowley, A. M. and Sze, S. M.,J. Appl. Phys., 36 (1965) 3212.Google Scholar
2 Sharma, B. L., in Willardson, R. K. and Beer, A. C. (eds.), Semiconductors and Semimetals, Vol. 15, Academic Press, New York, 1981, p. 1. Google Scholar
3 Crowell, C. R. and Rideout, V. L., Solid-State Electron., 12 (1969) 55.CrossRefGoogle Scholar
4 Chang, C. Y., Fang, Y. K. and Sze, S. M., Solid-State Electron., 14 (1971) 541.CrossRefGoogle Scholar
5 Barnes, P. A. and Cho, A. Y., Appl. Phys. Lett., 33 (1978) 651.Google Scholar
6 Braslau, N., J. Vac. Sci. Technol., 19 (1981) 803.Google Scholar
7 Pruniaux, B. R., J. Appl. Phys., 42 (1971) 3575.Google Scholar
8 Madams, C. J., Morgan, D. V. and Howes, M. J., Electron. Lett., 11 (1975) 574.CrossRefGoogle Scholar
9 Sebestyen, T., Solid-State Electron., 25 (1982) 543.Google Scholar
10 Riben, A. R. and Feucht, D. L., Int. J. Electron., 20 (1966) 583.Google Scholar
11 Woodall, J. M., Freehouf, J. L., Pettit, G. D., Jackson, T. and Kirchner, P., J. Vac. Sci. Technol., 19 (1981) 626.Google Scholar
12 Stall, R., Wood, C. E. C., Board, K. and Eastman, L. F., Electron. Lett., 15 (1979) 800.CrossRefGoogle Scholar
13 Dill, F. H., personal communication, 1981.Google Scholar
14 Braslau, N., Gunn, J. B. and Staples, J. L., Solid-State Electron., 10 (1967) 381.CrossRefGoogle Scholar
15 Ohata, K. and Ogawa, M., Proc. 12th Annu. Reliability Physics Symp., IEEE, New York, 1974, p. 278.Google Scholar
16 Eckhardt, G., in White, C. W. and Peercy, P. S. (eds.), Laser and Electron Beam Processing of Materials, Academic Press, New York, 1980, p. 467.Google Scholar
17 Ogawa, M., J. Appl. Phys., 51 (1980) 406.CrossRefGoogle Scholar
18 Freehouf, J. L., Jackson, T. N., Laux, S. E. and Woodall, J. M., J. Vac. Sci. Technol., 21 (1982) 570.Google Scholar
19 Cox, R. H. and Strack, H., Solid-State Electron., 10 (1967) 1213.CrossRefGoogle Scholar
20 Berger, H. H., Solid-State Electron., 15 (1972) 145.Google Scholar
21 Reeves, G. K. and Harrison, H. B., IEEE Electron Devices Lett., 3 (1982) 111.Google Scholar
22 Immorlica, A. A., Decker, D. R. and Hill, W. A., IEEE Trans. Electron Devices, 27 (1980) 2285.CrossRefGoogle Scholar