Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-20T06:46:42.090Z Has data issue: false hasContentIssue false

A Numerical Analysis of Fracture and High Temperature Creep Characteristics of Composites with Discontinuous Ductile Reinforcements

Published online by Cambridge University Press:  15 February 2011

S. B. Biner*
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011
Get access

Abstract

The role of the material parameters on the fracture and creep behavior of discontinuous ductile fiber reinforced brittle matrix composite system was numerically investigated. For simulation of fracture behavior, the ductile fibers were modeled using a constitutive relationship that accounts for strength degradation resulting from nucleation and growth of the voids. The matrix is assumed to be elastic and fails according to requirements of a stress criterion. Results indicate that the contribution of ductile reinforcement to the work of fracture value (toughness) of the composite increases with less exhaustion of its work hardening capacity before the onset of matrix failure. At creep regime, for rigidly bonded interfaces, the creep rate of the composite is not significantly influenced by the material properties of the ductile reinforcing phase due to development of large hydrostatic stress and constrained deformation in the reinforcement. Significant increases in room temperature fracture toughness can be achieved without extensively sacrificing the creep strength by ductile discontinuous reinforcements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Elliot, C. K., Odette, G. R., Lucas, G. E. and Sheckard, J. W., MRS Proc., 120, 95 (1988).Google Scholar
2. Ashby, M. F., Blunt, F. J. and Bannister, M., Acta Metal. Mater., 37, 1847 (1989).Google Scholar
3. Mataga, P., Acta Metal. Mater., 37, 3349 (1989).Google Scholar
4. Lu, T. C., Evans, A. G., Hecht, R. J. and Mehrabian, R., Acta Metal. Mater., 39, 1853 (1991).Google Scholar
5. Flinn, B. D., Ruhle, M. and Evans, A. G., Acta Metall., 37, 3001 (1989).Google Scholar
6. Bannister, M., Shercliff, H., Bao, B., Zuk, F. and Ashby, M. F., Acta Metall., 40, 1995 (1992).Google Scholar
7. Sigl, L. S., Evans, A. G., Mataga, P. A., McMeeking, R. M. and Dalgleish, B. J., Acta Metall., 36, 945 (1988).Google Scholar
8. Oh, T. S., Rodel, J., Cannon, R. M. and Ritchie, R. O., Acta Metall., 36, 2083 (1988).Google Scholar
9. Guson, A. L.,“Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth and Interaction,” PhD thesis, Brown University, 1975.Google Scholar
10. Gurson, A. L., J. Eng. Mater. Technol., 99, 2 (1977).Google Scholar
11. Tvergaard, V., Int. J. Fracture, 17, 389 (1981).Google Scholar
12. Tvergaard, V., Int. J. Fracture, 18, 237 (1982).Google Scholar
13. Tvergaard, V. and Needleman, A., Acta Metal. Meter., 32, 157 (1988).Google Scholar
14. Needleman, A. and Rice, J. R., Mechanics of Sheet Metal Forming, edited by Koistinen, D. P. and Wang, N. M. (Plenum Press, New York, 1978), p.237.Google Scholar
15. Chu, C. C. and Needleman, A., J. Eng. Mater. Technol., 102, 249 (1980).Google Scholar
16. Tvergaard, V., J. Mech. Phys. Solids, 30, 399 (1982).Google Scholar
17. Biner, S. B., Mater. Sci. Eng. A (in press).Google Scholar
18. Biner, S. B., Mater. Sci. Eng. A, 156, 21 (1992).Google Scholar