Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-15T20:39:40.219Z Has data issue: false hasContentIssue false

Nonlinear Response of Solids and Molecules in Intense Infrared Radiation

Published online by Cambridge University Press:  10 February 2011

Sokrates T. Pantelides
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Roland Winkler
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
Maurizio Ferconil
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
J. J. Vicente Alvarez
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
Get access

Abstract

Infrared radiation, which couples with vibrations in molecules and solids, has long been considered as a promising way to selectively control chemical reactions, materials processing, and biomedical applications. The expectation is that particular frequencies couple to specific atomic motions, in contrast to heat which imparts energy indiscriminately. The promise has yet to be fulfilled, but recent successes and the development of new lasers have rekindled interest. We report calculations of the dynamics of solids and molecules under intense infrared radiation. In solids, using a model calculation, we find that narrowly-defined “windows of opportunity” exist for resonant enhancement of impurity diffusion at moderate intensities. In molecules, using a generalization of Car-Parrinello dynamics, we find that, for very intense fields, energy absorption at normal modes is not very efficient and that selective bond-breaking may occur at nonresonant frequencies by “concerted kicks”. Finally, time-dependent density functional theory is used to show that the effect of very intense infrared radiation on atoms and molecules is to produce very high harmonics as found experimentally.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For a review of work before 1980, see Zewail, A. H., Physics Today, November 1980, p.2. See also articles in A. H. Zewail, Femtochemistry - Ultrafast Dynamics of the Chemical Bond, (World Scientific, Singapore, 1994);Google Scholar
2. Bloembergen, N. and Zewail, A. H., J. Phys. Chem. 88, 5459 (1984).Google Scholar
3. Chuang, T. J. and Seki, H., Phys. Rev. Lett. 49, 382 (1982).Google Scholar
4.E.g. the theory by Rice, O.K., Ramsberger, H. C., Kassel, L. S. and Marcus, R. A. (RRKM) described by Robinson, P. J. and Holbrook, K. A. in Unimolecular Reactions, (Wiley-Interscience, New York, 1972).Google Scholar
5. Sinha, A., Hsiao, M. C., and Crim, F. F., J. Chem. Phys. 92, 633 (1990); 24, 4928 (1991); 97, 2204 (1993); R. B. Metz, J D. Thoemke, J. M. Pfeiffer, and F. F. Crim, J. Chem. Phys. 99, 1744 (1993).Google Scholar
6. Potter, E. D., Herek, J. L., Pedersen, S., Liu, Q. and Zewail, A. H., Nature 355, 66 (1992).Google Scholar
7. Bronikowski, M. J., Simpson, W. R., and Zare, R. N., J. Phys. Chem,. 97, 2194 (1993).Google Scholar
8. Zare, R. N., Nature 365, 105 (1993); D. J. Tannor, Nature 369, 445 (1994); P. Brumer and M. Shapiro, Scientific American, March 1995, p. 56.Google Scholar
9. Edwards, G. et al. Nature 371, 416 (1994).Google Scholar
10. Ueda, A. et al. Nucl. Instr. and Meth. B 100, 427 (1994).Google Scholar
11. Schatz, G. C., Colton, M. C., and Grant, J. L., J. Phys. Chem. 88, 2971 (1984).Google Scholar
12. Heather, R. and Metiu, H., J. Chem. Phys. 88, 5496 (1988).Google Scholar
13. Chelkowski, S., Bandrauk, A. D., and Corkum, P. B., Phys. Rev. Lett. 65, 2355 (1990); S. Chelkowski and A. D Bandrauk, J. Chem. Phys. 99, 4279 (1993); M. Kaluza and J. T. Muckerman, J. Chem. Phys. 100, 4211 (1994).Google Scholar
14. Shi, S. and Rabitz, H., Comp. Phys. Commun. 63, 71 (1991); J. Botina, H. Rabitz and N. Rahman, J. Chem. Phys. 102, 226 (1995).Google Scholar
15. Tully, J. C., J. Electron Spectrosc. and Rel. Phenom. 45, 381 (1987).Google Scholar
16.See articles in Comp. Phys. Commun. Vol. 63, Nos. 1–3, edited by Kulander, K. C. (1991 and in Molecules in Laser Fields, edited by Bandrauk, A. D. (marcel Dekker, New York, 1994); see also A. Giusti-Suzor, F. H. Mies, L. F. DiMauro, E. Charron, and B. Yang, J. Phys. B: At. Mol. Opt. Phys. 28, 309 (995); J. Zhang and P. Lambropoulos, Phys. Rev. Lett. 77, 2186 (1997); M. Brewczyk, K. Rzazewski, and C. W. Clark, Phys. Rev. Lett. 78, 191 (1997).Google Scholar
17. Gillan, M. J., J. Phys. C: Solid State Phys. 19, 6169 (1986).Google Scholar
18. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
19. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
20. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
21. Runge, E. and Gross, E. K. U., Phys. Rev. Lett. 52, 997 (1984).Google Scholar
22. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
23. Rappé, A. K. and Goddard, W. A., J. Phys. Chem. 95, 3358 (1991).Google Scholar
24. Winkler, R. and Pantelides, S. T., J. Chem. Phys. 106, 7714 (1997).Google Scholar
25. Kan, C., Burnett, N. H., Capjack, C. E., and Rankin, R., Phys. Rev. Lett. 79, 2971 (1997); M. Schnürer, Ch. Spielmann, P. Wobrauschek, C. Streli, N. H. Burnett, C. Kan, K. Ferencz, R. Koppitsch, Z. Cheng, T. Brabec, and F. Krausz, Phys. Rev. Lett. 80 3236 (1998).Google Scholar