Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-p6h7k Total loading time: 0.236 Render date: 2022-05-16T08:33:45.296Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

A New Alternative for the Low-Workfunction Electrode in Organic Devices

Published online by Cambridge University Press:  21 March 2011

Norbert Koch
Affiliation:
Institut f. Festkörperphysik, TU-Graz, A-8010 Graz, Austria
Egbert Zojer
Affiliation:
Institut f. Festkörperphysik, TU-Graz, A-8010 Graz, Austria
Aparna Rajagopal
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
Jacques Ghijsen
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
Robert L. Johnson
Affiliation:
Institut f. Experimentalphysik, Universität Hamburg, D-22761 Hamburg, Germany
Günther Leising
Affiliation:
Institut f. Festkörperphysik, TU-Graz, A-8010 Graz, Austria
Jean-Jacques Pireaux
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
Get access

Abstract

The application of ele ctroactive organic materials in devices (light emitting diodes, photovoltaic cells) often requires electrodes with a low workfunction. Commonly, aluminum or alkaline earth metals are used, which usually exhibit strong interaction with the organic material, such as the formation of new covalent bonds or doping. This results in a strong modification of the electronic structure of the organic/metal interface, and in most cases does not yield the energy level alignment expected for the unreacted interface. As a n alternative to the above-mentioned metals we propose the use of samarium, with a workfunction of 2.7 eV, for the following reason: we have studied the interface formation between Sm and p -sexiphenyl (6P, which exhibits intense blue electroluminescence), with ultraviolet photoelectron spectroscopy. Sm was deposited stepwise onto thin films of 6P in ultrahigh vacuum, and the photoelectron spectra were recorded after each step. We did not find any indication for a strong interaction between the two materials. Metallic Sm is formed instantaneously and the valence electronic structure of 6P remains unchanged upon the metal deposition. The weak interaction at this interface allows one to determine the energy level alignment between a metal and an organic material in a direct manner from the photoelectron spectra, without the need for making any assumptions on the workfunction or ionization potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., D. Bradley, D.C., Dos-Santos, D.A., Brédas, J.L., Lögdlund, M., Salaneck, W.R., Nature, 397, 121 (1999)CrossRefGoogle Scholar
[2] Tasch, S., Brandstätter, C., Meghdadi, F., Leising, G., Froyer, G., Athouel, L., Adv. Mater., 9, 33 (1997)Google Scholar
[3] Leising, G., Tasch, S., Graupner, W., Fundamentals of Electroluminescence in Paraphenylene-type Conjugated Polymers and Oligomers, Handbook of Conducting Polymers, 2nd ed., ed. Skotheim, T., Elsenbaumer, R., Reynolds, J., (Dekker, 1997)Google Scholar
[4] Oji, H., Ito, E., Furuta, M., Kajikawa, K., Ishii, H., Ouchi, Y., Seki, K., J. Electr. Spectr. Relat. Phenom., 101, 517 (1999)CrossRefGoogle Scholar
[5] Ishii, H., Sugiyama, K., Ito, E., Seki, K., Adv. Mater., 11, 605 (1999)3.0.CO;2-Q>CrossRefGoogle Scholar
[6] Lazzaroni, R., Lögdlund, M., Calderone, A., Brédas, J.L., Synth. Met., 71, 2159 (1995)CrossRefGoogle Scholar
[7] Lazzaroni, R., Brédas, J.L., Dannetun, P., Fredriksson, C., Stafström, S., Salaneck, W.R., Electrochimica Acta, 39, 235 (1994)CrossRefGoogle Scholar
[8] Dannetun, P., Lögdlund, M., Fredriksson, C., Lazzaroni, R., Fauquet, C., Stafström, S., Spangler, C.W., Brédas, J.L., Salaneck, W.R., J. Chem. Phys., 100, 6765 (1994)CrossRefGoogle Scholar
[9] Salaneck, W.R., Stafström, S., Brédas, J.-L., Electronic and chemical structure of interfaces for polymer light emitting devices, Conjugated polymer surfaces and interfaces, (Cambridge Univ. Press, 1996)CrossRefGoogle Scholar
[10] Choong, V.E., Mason, M.G., Tang, C.W., Gao, Y., Appl. Phys. Lett., 72, 2689 (1998)CrossRefGoogle Scholar
[11] Koch, N., Yu, L.-M., Parenté, V., Lazzaroni, R., Johnson, R.L., Leising, G., Pireaux, J.-J., Brédas, J.-L., Adv. Mater., 10, 1038 (1998)3.0.CO;2-N>CrossRefGoogle Scholar
[12] Era, M., Tsutsui, T., Saito, S., Appl. Phys. Lett., 67, 2436 (1995)CrossRefGoogle Scholar
[13] Mikami, T., Yanagi, H., Appl. Phys. Lett., 73, 563 (1998)CrossRefGoogle Scholar
[14] Koch, N., Pogantsch, A., List, E.J.W., Leising, G., Blyth, R.I.R., Ramsey, M.G., Netzer, F.P., Appl. Phys. Lett., 74, 2909 (1999)CrossRefGoogle Scholar
[15] Johnson, R.L. and Reichardt, J., Nucl. Instr. Methods, 208, 719 (1983)Google Scholar
[16] Narioka, S., Ishii, H., Edamatsu, K., Kamiya, K., Hasegawa, S., Ohta, T., Ueno, N., Seki, K., Phys. Rev. B, 52, 2362 (1995)CrossRefGoogle Scholar
[17] Seki, K., Karlsson, U.O., Engelhardt, R., Koch, E.E., Schmidt, W., Chem. Phys., 91, 459 (1984)CrossRefGoogle Scholar
[18] Hongbin, W., Desai, S.R., Lai-Sheng, W., Phys. Rev. Lett., 76, 212 (1996)Google Scholar
[19] Cai, Y.Q., Bradshaw, A.M., Guo, Q., Goodman, D.W., Surf. Sci., 399, L357 (1998)CrossRefGoogle Scholar
[20] Malaske, U., Tegenkamp, C., Henzler, M., Pfnür, H., Surf. Sci., 408, 237 (1998)CrossRefGoogle Scholar
[21] Koch, N., Zojer, E., Rajagopal, A., Ghijsen, J., Johnson, R.L., Leising, G., Pireaux, J.J., in preparationGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A New Alternative for the Low-Workfunction Electrode in Organic Devices
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A New Alternative for the Low-Workfunction Electrode in Organic Devices
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A New Alternative for the Low-Workfunction Electrode in Organic Devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *