Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T12:37:41.600Z Has data issue: false hasContentIssue false

Nanostructured Oxide Films for High-Speed Humidity Sensors

Published online by Cambridge University Press:  01 February 2011

John J. Steele
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta, T6G 2V4, Canada.
Kenneth D. Harris
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta, T6G 2V4, Canada.
Michael J. Brett
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta, T6G 2V4, Canada.
Get access

Abstract

Miniaturized thin film humidity sensors were fabricated using nanostructured materials deposited by an advanced technique known as glancing angle deposition (GLAD). These sensors exhibited extremely fast desorption response times of less than 40 ms to steplike changes in humidity. Multiple response time measurements for various initial humidities have shown that the sensors maintain their rapid response at all levels of humidity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rittersma, Z. M., Sensor. Actuat. A-Phys. 96 (2–3), 196210 (2002).Google Scholar
2. Wiederhold, P. R., Water vapor measurement, 1st ed. (Marcel Dekker, New York, 1997) p. 357.Google Scholar
3. Kang, U. and Wise, K. D., IEEE Trans. Elect. Dev. 47, 702710 (2000).Google Scholar
4. Laville, C. and Pellet, C., IEEE Trans. Bio-Med. Eng. 49 (10), 11621167 (2002).Google Scholar
5. Harris, K. D., Huizinga, A. and Brett, M. J., Electrochem. Solid St. 5 (11), H27–H29 (2002).Google Scholar
6. Robbie, K. and Brett, M. J., U.S. Patent No. 5 866 204 (2 February 1999).Google Scholar
7. Sit, J. C., Vick, D., Robbie, K. and Brett, M. J., J. Mater. Res. 14, 11971199 (1999).Google Scholar
8. Vick, D., Tsui, Y. Y., Brett, M. J. and Fedosejevs, R., Thin Solid Films 350 (1–2), 4952 (1999).Google Scholar
9. Robbie, K. and Brett, M. J., J. Vac. Sci. Technol. A 15, 14601465 (1997).Google Scholar
10. Robbie, K., Brett, M. J. and Lakhtakia, A., Nature 384 (6610), 616–616 (1996).Google Scholar
11. Varghese, O. K., Gong, D. W., Paulose, M., Ong, K. G., Grimes, C. A. and Dickey, E. C., J. Mater. Res. 17, 11621171 (2002).Google Scholar
12. Wu, A. T., Seto, M. and Brett, M. J., Sensor. Mater. 11, 493505 (1999).Google Scholar
13. Wu, A. T. and Brett, M. J., Sensor. Mater. 13, 399431 (2001).Google Scholar
14. Harris, K. D., Huizinga, A. and Brett, M. J., Meas. Sci. Technol. 13, N10–N11 (2002).Google Scholar
15. Harris, K. D., Vick, D., Gonzalez, E. J., Smy, T., Robbie, K. and Brett, M. J., Surf. Coat. Tech. 138 (2–3), 185191 (2001).Google Scholar
16. Chou, K. S., Lee, T. K. and Liu, F. J., Sensor. Actuat. B-Chem. 56 (1–2), 106111 (1999).Google Scholar
17. Arai, H. and Seiyama, T., in Sensors A Comprehensive Survey, edited by Gopel, W., Hesse, J. and Zemel, J. N. (VCH, Weinheim, 1992) pp. 9811012.Google Scholar
18. Vick, D., Smy, T., Dick, B., Kennedy, S. and Brett, M. J., in Growth, Evolution and Properties of Surfaces, Thin Films and Self-Organized Structures. Symposium, edited by Moss, S. C., Poker, D. B. and Ila, D., (Mater. Res. Soc, Boston, MA, USA, 2001) pp. P3.43.16.Google Scholar
19. Harris, K. D., Westra, K. L. and Brett, M. J., Electrochem. Solid St. 4, C39–C42 (2001).Google Scholar