Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-17T20:00:07.769Z Has data issue: false hasContentIssue false

Nanometer Size Lead Iodide Particles

Published online by Cambridge University Press:  25 February 2011

Vivek Mehrotra
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
Eric Rodeghiero
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
Jens W. OTTO
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
Emmanuel P. Giannelis
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
Get access

Abstract

Nanometer size lead iodide particles have been synthesized in the porous network of a cross-linked polymer matrix. The optical band gap of the nanocrystals is shifted towards higher energy as compared to the bulk value. This shift is attributed to the quantum size effect on excitons. Intercalation with aniline leads to a further shift in the band gap which depends on the dipole moment of the intercalated guest species. Differential scanning calorimetry and high temperature x-ray diffraction have been used to analyze the ferroelectric transition in Pbl2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L. E., J. Chem. Phys. 80, 4403 (1984).CrossRefGoogle Scholar
2. Sandroff, C. J., Hwang, D. M., and Chung, W. M., Phys. Rev. B 33 5953 (1986).Google Scholar
3. Nair, S. V., Sinha, S., and Rustagi, K. C., Phys. Rev. B 35, 4098 (1987).Google Scholar
4. Kayanuma, Y., Phys. Rev. B 38, 9797 (1988).Google Scholar
5. Rama Krishna, M. V. and Friesner, R. A., Phys. Rev. Lett. 67, 629 (1991).Google Scholar
6. Tubbs, M. R., Phys. Status Solidi B 67, 11 (1975).Google Scholar
7. Lund, J. C., Moy, L. P., Squillante, M. R., Sinclair, F., Shah, K. S., and Entine, G., Nud. Instrum. Methods A 283, 299 (1989).Google Scholar
8. Oakey, S.H.L, J. Mat. Sc. Lett. 8, 957 (1989).Google Scholar
9. Ishikawa, K., Yoshikawa, K., and Okada, N., Phys. Rev. B 37, 5852 (1988).Google Scholar
10. Würfel, P. and Batra, I. P., Ferroelectrics 12, 55 (1976).Google Scholar
11. Mehrotra, V., Lombardo, S., Thompson, M. O., and Giannelis, E. P., Phys. Rev. B 44, 5786 (1991).CrossRefGoogle Scholar
12. Vassiliou, J. K., Mehrotra, V., Russell, M. W., and Giannelis, E. P. in Clusters and Clusters-Assembled Materials, edited by Averback, R. S., Bernholc, J., and Nelson, D.L. (Mater. Res. Soc. Proc. 206, Pittsburgh, PA 1991) pp. 561566.Google Scholar
13. Litvin, D. B., Acta Cryst. A 42, 44 (1986).Google Scholar
14. Salje, E., Palosz, B., and Wruck, B., in Structural and Magnetic Phase Transitions in Minerals, edited by Ghose, S., Coey, J.M.D., and Salje, E. (Springer Verlag, New York, 1988) p. 217.Google Scholar