Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-d5zgf Total loading time: 0.38 Render date: 2021-02-26T18:40:47.085Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Nanofabrication Based on Ion Beam-Laser Interactions with Self-Assembly of Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Naoki Kishimoto
Affiliation:
KISHIMOTO.Naoki@nims.go.jp, National Institute for Materials Science, Quantum Beam Center, 3-13 Sakura, Tsukuba, 305-0003, Japan, 81-29-863-5433, 81-29-863-5571
K. Saito
Affiliation:
KISHIMOTO.Naoki@nims.go.jp, National Institute for Materials Science, Quantum Beam Center, 3-13 Sakura, Tsukuba, 305-0003, Japan
Jin Pan
Affiliation:
KISHIMOTO.Naoki@nims.go.jp, Univ. of Tsukuba, Tsukuba, N/A, Japan
H. Wang
Affiliation:
KISHIMOTO.Naoki@nims.go.up, National Institute for Materials Science, Quantum Beam Center, 3-13 Sakura, Tsukuba, 305-0003, Japan
Y. Takeda
Affiliation:
KISHIMOTO.Naoki@nims.go.up, National Institute for Materials Science, Quantum Beam Center, 3-13 Sakura, Tsukuba, 305-0003, Japan
Corresponding
Get access

Abstract

Ion beam-based techniques offer various possibilities for robust spatial control of nanoparticles. Since ion implantation is inherently good at depth control of solutes or nanoparticles, additional lateral control may lead to 3D control of nanoparticles. We pursue a lateral-control method of nanoparticle assembly by controlling photon-energy field under ion implantation. Laser is irradiated into a-SiO2, either sequentially or simultaneously with ion implantation. Ions of 60 keV Cu- or 3 MeV Cu2+ and photons of 532 nm are used to study effects on nanoparticle evolution. Simultaneous laser irradiation under ion implantation enhances surface plasmon resonance (SPR), i.e., nanoparticle precipitation, while sequential laser irradiation of 532 nm tends to cause a decay of SPR, i.e., dissolution of Cu nanoparticles. The energy-field perturbation of laser, interactive with nanoparticle evolution, can be used for controlling nanoparticle assembly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1.For instance, Brown, A.D., George, H.B., Aziz, M.J. and Erlebacher, J.D., Materials Research Society Symposium Proceedings 792, R7.8 (2004).Google Scholar
2. Loeschner, H., Stengl, G., Kaesmaier, R. and Wolter, A., J. Vac. Sci. Technol. B 19 (2001) 2520.CrossRefGoogle Scholar
3. Jiang, X., Ji, Q., Ji, L., Chang, A. and Leung, K-N., J. Vac. Sci. Technol. B 21 (2003) 2724.CrossRefGoogle Scholar
4. Plaksin, O.A., Takeda, Y., Amekura, H. and Kishimoto, N., J. Appl. Phys. 99 (2006) 044307.CrossRefGoogle Scholar
5. Hache, F., Ricard, D., Flytzanis, C., J. Opt. Soc. Am. B 3 (1986) 1647.CrossRefGoogle Scholar
6. Takeda, Y., Plaksin, O., Lu, L. and Kishimoto, N., Nucl. Instrum. & Meth. in Phys. Res. B242 (2006) 194.CrossRefGoogle Scholar
7. Maier, S. A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A.G. and Atwater, H.A., Adv. Mater. 13 (2001) 1501.3.0.CO;2-Z>CrossRefGoogle Scholar
8. Dostalek, J., Jiang, J., Ladd, J., Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors, Springer (2006).Google Scholar
9. Fromknecht, R., Linker, G., Sun, K., Zhu, S., Wang, L.M., Veen, A. van, Huis, M.A. van, Weimann, T., Wang, J., Niemeyer, J., Eichhorn, F. and Wang, T., Mat. Res. Soc. Symp. Proc. 792 (2004) R8.3.1.Google Scholar
10. Morita, T., Kanda, K., Haruyama, Y. and Matsui, S., Japanese. J.Appl. Phys., 44 (2005) 3341.Google Scholar
11. Kishimoto, N., Plaksin, O.A., Masuo, K., Okubo, N., Umeda, N. and Takeda, Y., Nucl. Instrum. & Meth. in Phys. Res. B242 (2006) 186.CrossRefGoogle Scholar
12. Pan, J., Wang, H., Takeda, Y., Umeda, N., Kono, K., Amekura, H. and Kishimoto, N., Nucl. Instrum. & Meth. B257 (2007) 585.CrossRefGoogle Scholar
13. Takeda, Y., Plaksin, O.A., Lu, J. and Kishimoto, N., Vacuum 80 (2006) 776.CrossRefGoogle Scholar
14. Ishikawa, J, Tsuji, H, Toyota, Y., Gotoh, Y., Matsuda, K., Tanjyo, M. and Sakaki, S., Nucl. Instrum. & Meth. in Phys. Res. B96, 7 (1995).Google Scholar
15. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985), Chap 8.Google Scholar
16. Umeda, N., Kishimoto, N., Takeda, Y. and Lee, C.G., Nucl. Instrum. & Meth. B (2000) 864.CrossRefGoogle Scholar
17. Weller, D., Baglin, J.E.E., Kellock, A.J., Hannibal, K.A., Toney, M.F., Kusiski, G., Lang, S., Folks, L., Best, M.E. and Terris, B.D., J. Appl. Phys., 87 (2000) 5768.CrossRefGoogle Scholar
18. Kishimoto, N., Umeda, N., Takeda, Y., Lee, C.G., and Gritsyna, V.T., Nucl. Instrum. & Meth, in Phys. Res. B 148 (1999) 1017.CrossRefGoogle Scholar
19. Boldyryeva, H., Umeda, N., Plaksin, Oleg, Takeda, Y. and Kishimoto, N., Surf. & Coat. Tech., 196 (2005) 373.CrossRefGoogle Scholar
20. McBrayer, J.D., Swanson, R.M. and Sigmon, T.W., Electrochem, J.. Soc., 133 (1986) 1242.Google Scholar
21. Sasajima, Y. and Tanimura, K., Phys. Rev. B68 (2003) 14204.CrossRefGoogle Scholar
22. Masuo, K., Plaksin, O.A., Fudamoto, Y., Okubo, N., Takeda, Y., Kishimoto, N., Nucl. Instrum. & Meth. in Phys. Res. B 247 (2006) 268270.CrossRefGoogle Scholar
23. Wang, H., Takeda, Y., Umeda, N., Kono, K. and Kishimoto, N., Nucl. Instrum. & Meth. in Phys. Res. B257 (2006) 20.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanofabrication Based on Ion Beam-Laser Interactions with Self-Assembly of Nanoparticles
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanofabrication Based on Ion Beam-Laser Interactions with Self-Assembly of Nanoparticles
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanofabrication Based on Ion Beam-Laser Interactions with Self-Assembly of Nanoparticles
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *