Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-23T02:00:56.107Z Has data issue: false hasContentIssue false

Multicomponent Ceramic Powder Generation by Spray Pyrolysis

Published online by Cambridge University Press:  25 February 2011

Shirley W. Lyons
Affiliation:
Chemical Engineering Department, Center For Micro-Engineered Ceramics, University of New Mexico, Albuquerque, 87131
J. Ortega
Affiliation:
Chemical Engineering Department, Center For Micro-Engineered Ceramics, University of New Mexico, Albuquerque, 87131
L. M. Wang
Affiliation:
Geology Department, University of New Mexico, Albuquerque, 87131
T. T. Kodas
Affiliation:
Chemical Engineering Department, Center For Micro-Engineered Ceramics, University of New Mexico, Albuquerque, 87131
Get access

Abstract

We have examined methods for controlling the morphology and microstructure of ceramic particles produced by spray pyrolysis. A variety of materials were examined including SrTiO3and BaTiO3 and the oxides of Al, Mg, Zn, Pd, V, Mo, and Bi. The morphology of the particles was influenced by using colloidal precursors in combination with molecular precursors for particle generation. Slow drying rates obtained by using high relative humidities and controlled axial temperature gradients did not influence particle morphology for the systems and conditions studied. The microstructure of Al2O3, V2O5, and PdO particles was controlled by varying the temperature to provide nanocrystalline or single-crystal particles. Evaporation and condensation of volatile species such as MoO3 and V2O5 dramatically modified particle microstructure and morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kodas, T. T., Angew. Chemie: Int. Ed. in English 28, 794 (1989).CrossRefGoogle Scholar
2. Zhang, S. and Messing, G., J. Amer. Ceram. Soc. 73, 61 (1990).Google Scholar
3. Gardner, T., Sproson, D., and Messing, G., Mat. Res. Soc. Symp. Proc. 32, 227 (1984).CrossRefGoogle Scholar
4. Ruthner, M. I., Science of Sintering 11, 203 (1979);Google Scholar
Ruthner, M. I., Ceramic Powders, ed. by Vincenzini, P., (Elsevier, Amsterdam, 1983) p.515;Google Scholar
Ruthner, M. I., Science of Sintering 6, 82(1974).Google Scholar
5. Vollath, D., J. Mater. Sci. 25, 2227 (1990).CrossRefGoogle Scholar
6. Epstein, J., Hydrometallurgy 2, 1 (1976).CrossRefGoogle Scholar
7. Pebler, A. and Charles, R., Mat. Res. Bull. 24, 1069 (1989).CrossRefGoogle Scholar
8. Wenkins, J. and Leavitt, W., Magnetism and Magnetic Materials Conference, Boston, MA, 1956, Amer. Inst. Elect. Engs.(1957).Google Scholar
9. Edelson, L. and Glaser, A., J. Amer. Ceram. Soc. 71, 225 (1988).Google Scholar
10. Hinds, W., Aerosol Technology, (Wiley Interscience, N.Y., 1982).Google Scholar
11. Gardner, G., Int. J. Heat Mass Transfer 8 667 (1965).CrossRefGoogle Scholar
12. Leong, K., Aerosol, J. Science 12, 417 (1981);Google Scholar
Leong, K., Aerosol, J. Science 18 511 (1987);Google Scholar
Leong, K., Aerosol, J. Science 18, 525 (1987).Google Scholar
13. Ranz, W. and Marshall, W., Chem. Eng. Prog. 48, 141 (1952).Google Scholar
14. McDuffie, J. and Marshall, W., Chem. Eng. Prog. 49, 417 (1953).Google Scholar
15. Moore, K., Smith, D., Kodas, T. T., J. Amer. Cer. Soc. 75, 213 (1992).Google Scholar
16. Kanzaki, S., Tabata, H., Kumazawa, T., and Ohta, S. J. Am. Ceram. Soc. 6, 655 (1985).Google Scholar
17. Roy, D., Neurgonkar, R., O'Holleran, T., and Roy, R., Amer. Ceram. Soc. Bull. 56, 1023 (1977).Google Scholar
18. Baukal, W., Beck, H., Kuhn, W., and Sieglen, R., Power Sources 6, 655 (1977).Google Scholar
19. Ciminelli, R. R., and Messing, G. L., Ceramica 30, 131 (1984).Google Scholar
20. Kato, A., Ishimatsu, H., and Suyama, Y., Japan, J. Soc. Powder and Powder Metallurgy 30, 131 (1979).Google Scholar
21. Gardner, T. and Messing, G., Amer. Cer. Soc. Bull. 63, 1498 (1984).Google Scholar
22. Liu, T., Sakurai, G., Mizutani, N., and Kato, M., J. Mat. Sci. 21, 3698 (1986).Google Scholar
23. Seitz, K., Ivers-Tiffee, E., Thomann, H., and Weiss, A., in High Tech. Ceramics, edited by Vincenzini, P. (Elsevier, Amsterdam, 1987) p. 1753.Google Scholar
24. Szabo, Z., Jover, B., and Juhasz, J., Mater. Sci. Monographs 28B, React. Solids Pt. B, 659 (1985).Google Scholar
25. Charlesworth, D. and Marshall, W., AIChE J. 6, 9 (1969).Google Scholar
26. Nesie, S. and Vodnik, J., Chem. Eng. Sci. 46, 527 (1991).Google Scholar
27. Masters, K., Sprav Drying, (John Wiley and Sons, NY, 1972).Google Scholar
28. Sano, Y. and Keey, R., Chem. Eng. Sci. 37, 881 (1982).Google Scholar
29. Cheong, H., Jeffreys, G., and Mumford, C., AIChE J. 22, 1334 (1986).Google Scholar
30. Siegel, R., Material Research Bulletin 25, 60 (1990).CrossRefGoogle Scholar
31. Sullivan, R., Srinivasan, T., and Newnham, R., J. Amer. Cer. Soc. 73, 3715 (1990).Google Scholar
32. Carim, A. H., Doherty, P., Kodas, T. T., and Ott, K., Materials Letters 8 335 (1989)Google Scholar
33. Lyons, S., Ward, T., Kodas, T., Prasad, R., Pratsinis, S., submitted to J. Mater. Res. (1992).Google Scholar