Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-16T21:21:35.475Z Has data issue: false hasContentIssue false

Mössbauer Characterization of Iron Oxide Nanoclusters Grown within Aluminosilicate Matrices

Published online by Cambridge University Press:  10 February 2011

Georgia C. Papaefthymiou
Affiliation:
Department of Physics, Villanova University, Villanova, PA, USA.
A. Bustamante
Affiliation:
Facultad de Ciencias Fisicas, Universidad Mayor de San Marcos, Lima, Peru.
Rosa B. Scorzelli
Affiliation:
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brasil.
Get access

Abstract

Mössbauer spectroscopy uses the resonant absorption of nuclear radiation by 57Fe to probe the electronic and internal magnetic structure of iron based magnetic materials. The technique has a characteristic measuring time of 10 ns enabling investigation of spin relaxation phenomena in nanoscale particles; and determination of their magnetic properties in the absence of externally applied magnetic fields. We report on Mössbauer studies of γ-Fe2O3 nanoparticles synthesized within hexagonally packed mesoporous MCM-41 aluminosilicate matrices with cylindrical pores of 2.5 nm diameter. Data analysis allowed differentiation of particle-matrix interfacial versus particle-core interior iron sites. Interfacial iron atoms experience large electric field gradients resulting in quadrupole splitting values of ΔEq (surface) = (1.25 ± 0.05) mm/s, while core atoms exhibit smaller values of δEq (core) = (0.73± 0.05) mm/s at room temperature. Similarly, differences were observed in the values of the internal hyperfine fields at low temperatures indicating reduced strength in the exchange interactions at the particle surface, with interfacial atoms experiencing internal fields Hhf (surface) = (458 ± 1) kOe reduced relative to the core Hhf (core) = (488 ±1) kOe at 4.2 K. Particle/matrix interactions at the surface appear to perturb the electronic interactions deeper into the core than the magnetic exchange interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, L., Papaefthymiou, G. C. and Ying, J. Y., J. Phys. Chem. B., 105, 7414 (2001) andGoogle Scholar
1. Zhang, L., Papaefthymiou, G. C. and Ying, J. Y., J. Phys. Chem. B., 105, 7414 (2001) and references there in.Google Scholar
2. Zhang, L., Papaefthymiou, G. C. and Ying, J. Y., J. Appl. Phys., 81, 6892 (1997);Google Scholar
Zhang, L., Papaefthymiou, G. C., Ziolo, R.F. and Ying, J. Y., Nanostr. Mater. 9, 185 (1997).Google Scholar
3. Sohn, B. H., Cohen, R. E. and Papaefthymiou, G. C., J. Mag. Mag. Mat., 182, 216 (1998) and references there in.Google Scholar
4. Ahmed, S.R., Ogal, S.B., Papaefthymiou, G.C., Ramesh, R. and Kofinas, P., Appl. Phys. Lett., 80, 1616 (2002)Google Scholar
5. Hadjipanayis, G. C., Siegel, R. W.; Eds. Nanophase Materials: Synthesis-Properties-Applications; Kluwer: Boston, 1994;Google Scholar
Gleiter, H., Mater. Sci. Forum, 67, 189 (1995);Google Scholar
Chien, C. L., Ann. Rev. Mater. Sci., 129, 25 (1995);Google Scholar
Leslie-Pelecky, D. L. and Rieke, R.D., Chem. Mater., 8, 1770 (1996);Google Scholar
Edelstein, A.S. Camarata, R.C., Eds. Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing: Bristol (1996)Google Scholar
6. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature, 359, 710 (1992).Google Scholar
7. Greenwood, N. N. and Gibb, T. C., Mössbauer Spectroscopy; Chapman Hall: London, 1971.Google Scholar
8. Coey, J. M. D., Phys. Rev. Lett., 27, 1140 (1971).Google Scholar
9. Papaefthymiou, G. C., Mat. Res. Soc. Symp. Proc. 635 (2001) C2.4.1 Google Scholar
10. Dormann, J. L. and Fiorani, D.; Eds. Magnetic Properties of Fine Particles; Elsevier: North-Holland, 1992.Google Scholar
11. Néel, L., Ann. Geophys. (France) 5, 99 (1949);Google Scholar
Jacobs, I.S. and Bean, C.P., in Magnetism III, edited by Rado, G.T. and Suhl, H. (Academic Press, New York, 1963) p. 271;Google Scholar
Brown, W.F. Jr Phys. Rev. 130, 8061 (1963);Google Scholar
Aharoni, A., Phys. Rev. A 135, 447 (1964)Google Scholar
12. de Jongh, L.J. and Miedema, A.R., Adv. Phys., 1, 23 (1974).Google Scholar
Mørup, S. and Topsøe, H., J. Appl. Phys., 11, 63 (1976).Google Scholar
14. Kelly, H. V., Folen, V. J., Hass, M., Schreiner, W. N. and Beard, G. B., Phys. Rev., 122, 1447 (1961).Google Scholar
15. Stoner, E.C. F.R.S., and Wohlfarth, E.P, Phil. Trans. Roy. Soc. London, A240, 599 (1948); reprinted in IEEE Trans. Magn., 27, 3475 (1991)Google Scholar