Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-z4vvc Total loading time: 3.551 Render date: 2021-02-26T02:00:41.842Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Morphologically Well-defined Gold Nanoparticles Embedded in Thermo-Responsive Hydrogel Matrices

Published online by Cambridge University Press:  15 March 2011

Chun Wang
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, E25-342, Cambridge, MA 02139, U.S.A.
Nolan T. Flynn
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, E25-342, Cambridge, MA 02139, U.S.A.
Robert Langer
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, E25-342, Cambridge, MA 02139, U.S.A.
Corresponding
E-mail address:
Get access

Abstract

Nanocomposite materials consisting of colloidal gold (Au) nanoparticles embedded in thermo-responsive poly(N-isopropylacrylamide) (PNIPAm) hydrogels are synthesized. Thiol groups that bind to both Au3+ ions and colloidal Au are incorporated into the side-chains of the PNIPAm hydrogels through copolymerization. This report describes formation of morphologically well-defined Au nanoparticles with varying long-term stability inside the hydrogel matrices containing adjustable concentrations of thiols. Compared with the non-Au containing PNIPAm hydrogels, the Au-PNIPAm nanocomposite hydrogels have shown higher degrees of equilibrium swelling and different temperature-triggered phase transitions. It is hypothesized that these remarkable changes in hydrogel bulk properties are related to the different morphologies and sizes, and possibly the amount of surface charges, of the Au nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Bronstein, L. M., Top. Curr. Chem. 226, 55 (2003).CrossRefGoogle Scholar
2. Mayer, A. B. R., Mark, J. E., Morris, R. E., Polym. J. 30, 197 (1998).CrossRefGoogle Scholar
3. Crooks, R. M., Zhao, M., Sun, L., Chechik, V., Yeung, L. K., Acc. Chem. Res. 34, 181 (2001).CrossRefGoogle Scholar
4. Ding, J. H. and Gin, D. L., Chem. Mater. 12, 22 (2000).CrossRefGoogle Scholar
5. Biffis, A., D'Archivio, A. A., Jerabek, K., Schmid, G., Corain, B., Adv. Mat. 12, 190 (2000).3.0.CO;2-4>CrossRefGoogle Scholar
6. Choi, K. M. and Shea, K. J., J. Am. Chem. Soc. 116, 9052 (1994).CrossRefGoogle Scholar
7. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H., Zhang, J., Annu. Rev. Biomed. Eng. 2, 9 (2000).CrossRefGoogle Scholar
8. Bronstein, L. M., Platonova, O. A., Yakunin, A. N., Yanovskaya, I. M., Valetsky, P. M., Dembo, A. T., Makhaeva, E. E, Mironov, A. V., Khokhlov, A. R., Langmuir 14, 252 (1998).CrossRefGoogle Scholar
9. Biffis, A., Orlandi, N., Corain, B., Adv. Mat. 15, 1551 (2003).CrossRefGoogle Scholar
10. Hoffman, A. S., MRS Bulletin Sep. 1991, p. 42.CrossRefGoogle Scholar
11. Chen, C.-W., Chen, M.-Q., Serizawa, T., Akashi, M., Chem. Commun. 831 (1998).Google Scholar
12. Holtz, J. H. and Asher, S. A., Nature 389, 829 (1997).CrossRefGoogle Scholar
13. Sheeney-Haj-Ichia, L., Sharabi, G., Willner, I., Adv. Functional Mater. 12, 27 (2002).3.0.CO;2-T>CrossRefGoogle Scholar
14. Sershen, S. R., Westcott, S. L., West, J. L., Halas, N. J., Appl. Phys. B 73, 379 (2001).CrossRefGoogle Scholar
15. Flory, P. J., Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).Google Scholar
16. Bowmaker, G. A. and Dobson, B. C., J. Chem. Soc., Dalton Trans.: Inorganic Chem. 1, 267 (1981).CrossRefGoogle Scholar
17. Rao, C. N. R., Kulkarni, G. U., Govindaraj, A., Satishkumar, B. C., Thomas, P. J., Pure Applied Chem. 72, 21 (2000).CrossRefGoogle Scholar
18. Creighton, J. A. and Eadon, D. G., Chem. Commun. 87, 3881 (1991).Google Scholar
19. Blatchford, C. G., Campbell, J. R., Creighton, J. A., Surface Sci. 120, 435 (1982).CrossRefGoogle Scholar
20. Cleland, W. W., Biochemistry 3, 480 (1964).CrossRefGoogle Scholar
21. Hyning, D. L. Van, Klemperer, W. G., Zukoski, C. F., Langmuir 17, 3120 (2001).CrossRefGoogle Scholar
22. Plunkett, K. N., Kraft, M. L., Yu, Q., Moore, J. S., Macromolecules 36, 3960 (2000).CrossRefGoogle Scholar
23. Katchalsky, A., Lifson, S., Eisenberg, H., J. Polym. Sci. 7, 571 (1951).CrossRefGoogle Scholar
24. Vakkalanka, S. K., Brazel, C. S., Peppas, N. A., J. Biomater. Sci. Polym. Ed. 8, 119 (1996).CrossRefGoogle Scholar
25. Gutowska, A., Bae, Y. H., Jacobs, H., Feijen, J., Kim, S. W., Macromolecules 27, 4167 (1994).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 19 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Morphologically Well-defined Gold Nanoparticles Embedded in Thermo-Responsive Hydrogel Matrices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Morphologically Well-defined Gold Nanoparticles Embedded in Thermo-Responsive Hydrogel Matrices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Morphologically Well-defined Gold Nanoparticles Embedded in Thermo-Responsive Hydrogel Matrices
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *