Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T05:29:05.591Z Has data issue: false hasContentIssue false

Modeling of Neptunium(V) Sorption Behavior onto Iron-Containing Minerals

Published online by Cambridge University Press:  15 February 2011

T. Fujita
Affiliation:
Central Research Institute of Electric Power Industry (CRIEPI)2–11–1, Iwado-Kita, Komae, Tokyo 201, Japan
M. Tsukamoto
Affiliation:
Central Research Institute of Electric Power Industry (CRIEPI)2–11–1, Iwado-Kita, Komae, Tokyo 201, Japan
T. Ohe
Affiliation:
Central Research Institute of Electric Power Industry (CRIEPI)2–11–1, Iwado-Kita, Komae, Tokyo 201, Japan
S. Nakayama
Affiliation:
Japan Atomic Energy Research Institute (JAERI)Tokai, Naka, Ibaraki 319–11, Japan
Y. Sakamoto
Affiliation:
Japan Atomic Energy Research Institute (JAERI)Tokai, Naka, Ibaraki 319–11, Japan
Get access

Abstract

Sorption behaviors of neptunium (V) on naturally-occurring magnetite (Fe3O4) and goethite (α-FeOOH) in 0.1M NaN03 electrolyte solution under aerobic conditions were interpreted using the surface complexation model (SCM). The surface properties of these materials were experimentally investigated by C02-free potentiometric titration, and SCM parameters for the constant capacitance model, such as protonation/deprotonation constants of the surface hydroxyl group, were determined. The number of negatively charged sorption sites of goethite rapidly increased with the increase of the bulk solution pH compared with that of magnetite and this tendency was similar to the pH dependence of neptunium sorption. This implies that the neptunyl cation, NpO2+, plays a dominant role in possible sorption reactions. Assuming that the dominant surface complex is XO-NpO2, modeling by means of SCM was carried out, and the results were found to agree with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. PNC, First Progress Report of Research and Development on Geological Disposal of High Level Radioactive Waste, (PNC TN1410 93-059, 1992), pp. 14.Google Scholar
2. Thompson, R. C., Radiation Research 90, 1 (1982).Google Scholar
3. Hoch, A. R., Naish, C. C., Sharland, S. M., Smith, A. C. and Tayler, K. J., in Scientific Basis for Nuclear Waste Management XVI, edited by Interrante, C. G. and Pabalan, R. T., (Mater. Res. Soc. Proc. 294, Pittsburgh, PA, 1992), p. 637.Google Scholar
4. Davis, J. A., James, R. O., and Leckie, J. O., J. Colloid Interface Sci. 67 (1), 90 (1978).Google Scholar
5. Turner, D. R., Griffin, T., and Dietrich, T. B., in Scientific Basis for Nuclear Waste Management XVI, edited by Interrante, C. G. and Pabalan, R. T., (Mater. Res. Soc. Proc. 294, Pittsburgh, PA, 1992), p. 783.Google Scholar
6. Tripathi, V. S., Siegel, M. D., and Kooner, Z. S., ibid., p791.Google Scholar
7. Payne, T. E. and Waite, T. D., Radiochim. Acta 52/53, 487 (1991).Google Scholar
8. Girvin, D. C., Ames, L. L., Schwab, A. P., and Mcgarrah, J. E., J. Colloid Interface Sci. 141, 67 (1991).Google Scholar
9. Nakayama, S. and Sakamoto, Y., Radiochim. Acta 52/53, 153 (1991).Google Scholar
10. Westall, J. and Hohl, H., Advances in Colloid and Interface Sci., 12, 265 (1980).Google Scholar
11. Westall, J. C., FITEQL VERSION 2.0:A Computer Program for Determining of Chemical Equilibrium Constants for Experimental Data, (Report 82–01, Dept. of Chem., Oregon State Univ., Corvallis, Oregon, 1982).Google Scholar
12. Westall, J. C., MICROQL Version 2 for PC’s: A Chemical Equilibrium Program in BASIC, (Report 86–02, Dept. of Chem., Oregon State Univ., Corvallis, Oregon, 1986).Google Scholar
13. Lumsdon, D. G. and Evans, L., J. Colloid Interface Sci., 164, 119 (1994).Google Scholar
14. Davis, J. A., James, R. O., and Leckie, J. O., J. Colloid Interface Sci. 63 (3), 480 (1978).Google Scholar
15. Neck, V., Kim, J. I., and Kanellakopulos, B., Radiochim. Acta 56, 25 (1992).Google Scholar
16. Cross, J. E., Ewart, F. T., and Tweed, C. J., ARE R12324, Harwell Laboratory, Oxford shire (1987).Google Scholar
17. Danesi, P. R., Chiarizia, R., Scibena, G., and D’Alesandro, G., J. Inorg. Nucl. Chem., 33, 3503 (1971).Google Scholar
18. Stumm, W., Kummert, R., and Sigg, L., Croatica Chemica Acta 52 (2), 291 (1980).Google Scholar
19. Sanchez, A. L., Murray, J. W., and Sibley, T. H., Geochimica et Cosmochimica Acta, 49, 2297 (1985).Google Scholar
20. LaFlamme, B. D. and Murray, J. W., Geochimica et Cosmochimica Acta, 51, 243 (1987).Google Scholar
21. Hsi, C-K. D. and Langmuir, D., Geochimica et Cosmochimica Acta, 49, 1931 (1985).Google Scholar
22. Goldberg, S. and Sposito, G., Soil. Sci. Soc. Am. J., 48, 772 (1984); S.Goldberg, ibid, 50, 1154 (1986); 19, 851 (1985).Google Scholar
23. Ohe, T., Tsukamoto, M., Fujita, T., Hesböl, R., and Hermannson, H-P., in Proceedings of The 1993 International Conference on Nuclear Waste Management and Environmental Remediation, edited by Alexandre, D., et. al, (ASME, New York, 1993), p. 197.Google Scholar
24. Sakamoto, Y. and Senoo, M., Proceedings of Fall Meeting of the Atomic Energy Society of Japan, M15, p.623 (1992), (in Japanese).Google Scholar
25. Nagao, S., Ogawa, H., Young-Myoung, L., and Kamiyama, H., Proceedings of Spring Meeting of the Atomic Energy Society of Japan, p.438 (1993), (in Japanese).Google Scholar
26. Combes, J-M., Chishoim-Brause, C. J., Brown, G. E. Jr., Parks, G. E., Conradson, S. D., Eller, P. G., Trlay, I. R., Hobart, D. E., and Meijer, A., Environ. Sci. Technol., 26, 376 (1992).Google Scholar