Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-08-04T02:52:19.872Z Has data issue: false hasContentIssue false

Microstructural and Magnetic Properties on Graphitic Encapsulated Ni Nanocrystals and Pure Ni Nanoparticles with NiO Layer

Published online by Cambridge University Press:  21 February 2011

Xiangcheng Suns
Affiliation:
Instituto Nacional de Investigaciones Nuclears (ININ), Km.36.5, Carr. México-Toluca, .P. 52045 Ocoyoacac, do. de México, MEXICO. E-mail: sunxc@nuclear.inin.mx
M. Jose Yacamana
Affiliation:
Instituto Nacional de Investigaciones Nuclears (ININ), Km.36.5, Carr. México-Toluca, .P. 52045 Ocoyoacac, do. de México, MEXICO.
F. Morales
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P.70-360, México 04510, . F. México, MEXICO
Get access

Abstract

Two kinds of different nickel nanoparticles with distinct morphological properties, Ni(C) and Ni(O), are studied. Magnetization measurements for the assembly of two kinds of Ni nanoparticles show, a larger coercivity and remanence as well as the deviation between the zero field cooling (ZFC) and the field cooling (FC) magnetization have been observed in the Ni(O) particles. This deviation may be explained as a typical cluster glass-like behavior due to ferromagnetic interaction among the assembly of Ni(O) particles. However, Ni(C) particles exhibit superparamagnetism at room temperature. The average blocking temperature (TB) is determined to around 115K. We also observe gradual decrease in saturation magnetization, which is attributed to the nanocrystalline nature of the encapsulated particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anno, E., and Yamaguchi, T., Surface Sci., 286, 168(1993)Google Scholar
2. Jiang, L.Y., Yao, Y.D., Chen, Y.Y. and Hwu, Y., Nanostruct. Mater., 9, 581(1997)Google Scholar
3. Chen, K.Z., Zhang, Z.K., Cui, Z.L., Zuo, D.H. and Yang, D.Z., Nanostruct. Mater., 8, 205(1997)Google Scholar
4. Dong, X.L., Zhang, Z.D., Xiao, Q.F., Zhao, X.G., Chuing, Y. C., Jin, S.R., Sun, W.M., Lin, Z. J., Zhang, Z.X., Yang, H., J. Mater. Sci., 33, 1915(1998)Google Scholar
5. Mendoza, D., Morales, F., Escudero, R., and Walter, J., J. Phys.: Condens. Matter, 11, L317 (1999).Google Scholar
6. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Suzuki, K., Kasuya, A., and Nishina, Y., J. Phys. Chem. Solids, 54 (12), 1849(1993)Google Scholar
7. Morup, S., Europhys. Lett., 28, 671(1994)Google Scholar
8. Kang, Y.S., Risbud, S., Rabolt, J. F., Stroeve, P., Chem. Mater., 8, 2209(1996)Google Scholar
9. Dorman, J.L., Charkaoui, R., Spinu, L., Nogues, M., Lucari, F., Fiorani, D., Garcia, A., Tronc, F. and Jolivct, J.P., J. Magn. Magn. Mater., 187, L139(1998)Google Scholar
10. Morup, S., Bodker, F., Hendriksen, P. V., and Linderoth, S., Phys. Rev. B 52, 287(1995)Google Scholar
11. Muro, A. Garcia del, Battle, X. and Labarta, A., Phys. Rev. B 59, 13584(1999)Google Scholar
12. Giguere, A., Foldeaki, M., Dunlap, R.A., and Chahine, R., Phys. Rev. B 59, 431(1999)Google Scholar