Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T12:25:57.678Z Has data issue: false hasContentIssue false

Metal-Induced Nickel Silicide Nanowire Growth Mechanism in the Solid State Reaction

Published online by Cambridge University Press:  01 February 2011

Joondong Kim
Affiliation:
jk74@buffalo.edu, University at Buffalo, State University of New York, Electrical Engineering, 207 Bonner Hall, Buffalo, NY, 14260, United States, (716) 645-3115 Ext. 1215, (716) 645-3656
Jong-Uk Bae
Affiliation:
jbae4@buffalo.edu, University at Buffalo, State University of New York, Electrical Engineering, Buffalo, NY, 14260, United States
Wayne A. Anderson
Affiliation:
waanders@eng.buffalo.edu, University at Buffalo, State University of New York, Electrical Engineering, Buffalo, NY, 14260, United States
Hyun-Mi Kim
Affiliation:
hyunmi@snu.ac.kr, Seoul National University, Materials Science and Engineering, Seoul, N/A, 151-742, Korea, Republic of
Ki-Bum Kim
Affiliation:
kibum@snu.ac.kr, Seoul National University, Materials Science and Engineering, Seoul, N/A, 151-742, Korea, Republic of
Get access

Abstract

A unique nanowire growth was accomplished at 575 oC by the metal-induced growth (MIG). That is a spontaneous reaction between metal and Si. The deposited metal worked as a catalyst layer to grow nanowire in the solid-state. Various metals (Ni, Co, and Pd) were used in MIG nanowire fabrication and Ni-induced case was successful in demonstrating that metal species should be a dominant mover in nanowire growth. Transmission electron microscopy investigation was performed to observe the nanowire growth direction. The Ni to Si composition was studied by energy dispersive spectroscopy showing the Ni diffusion inside the nanowire as well as the Ni silicide layer. The practical application MIG nanowire was proven by fabricating nanoscale contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huang, Y., Duan, X., Cui, Y., Lauhon, L. J., Kim, K.H., Lieber, C. M., Science 294, 1313 (2001).Google Scholar
2. Hua, S.F., Wonga, W. Z., Liua, S. S., Wua, Y. C., Sunga, C. L., and Huangb, T. Y., Solid State Comm. 125, 351 (2003).Google Scholar
3. Tresback, J. S., Vasiliev, A. L., and Padture, N. P., J. Mater. Res. 20, 2613 (2005)Google Scholar
4. Wagner, R. S., and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964)Google Scholar
5. Edwards, P. L., and Happel, R. J., J. Appl. Phys. 33, 943 (1962).Google Scholar
6. Morales, A. M., and Lieber, C. M., Science 279, 208 (1998).Google Scholar
7. Westwater, J., Gosain, D. P., Tomiya, S., Usui, S., and Ruda, H. J. Vac. Sci. Technol. B 15, 554 (1997).Google Scholar
8. Wu, Yue, Cui, Yi, Huynh, Lynn, Barrelet, Carl J., Bell, David C., and Lieber, C. M., Nano Letters 4, 433 (2004)Google Scholar
9. Zeng, X. B., Xu, Y. Y., Zhang, S. B., Hu, Z. H., Diao, H. W., Wang, Y. Q., Kong, G. L., and Liao, X. B., J. Cryst. growth 247, 13 (2003).Google Scholar
10. Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J., and Lieber, C. M., Appl. Phys. Lett. 78, 2214 (2001).Google Scholar
11. Yu, D. P., Bai, Z. G., Ding, Y., Hang, Q. L., Zhang, H. Z., Wang, J. J., Zou, Y. H., Qian, W., Xiong, G. C., Zhou, H. T., and Feng, S. Q., Appl. Phys. Lett. 72,3458 (1998).Google Scholar
12. Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S., Bello, I., and Lee, S. T., Chem. Phys. Lett. 299, 237 (1999).Google Scholar
13. Feng, S. Q., Yu, D. P., Zhang, H. Z., Bai, Z. G., Ding, Y., J. Cryst. Growth 209, 513 (2000).Google Scholar
14. Zhang, H. Z., Yu, D. P., Ding, Y., Bai, Z. G., Hang, Q. L., and Feng, S. Q., Appl. Phys. Lett. 73, 3396 (1998).Google Scholar
15. Chen, X., Xing, Y., Xu, J., Xiang, J., and Yu, D., Chem. Phys. Lett. 374, 626 (2003).Google Scholar
16. Yan, H. F., Xing, Y. J., Hang, Q. L., Yu, D. P., Wang, Y. P., Xu, J., Xi, Z. H., and Feng, S. Q., Chem. Phys. Lett. 323, 224 (2000).Google Scholar
17. Lee, K.H., Yang, H. S., Baik, K. H., Bang, J., Vanfleet, R. R., and Sigmund, W., Chem. Phys. Lett. 383, 380 (2004).Google Scholar
18. Kim, J. and Anderson, W. A., Thin Solid Films 483, 60 (2005).Google Scholar
19. Bartur, M. and Nicolet, M.A., J. Appl. Phys. 54, 5404 (1983).Google Scholar
20. Finstad, T. G., Mayer, J. W., and Nicolet, M.A., Thin Solid Films 51, 391 (1978). [20] K. J.Ziegler, D. M.Lyons, J. D.Holmes, D.Erts, and B.Polyakov, Appl. Phys. Lett. 84, 4074 (2004).Google Scholar