Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T18:43:40.360Z Has data issue: false hasContentIssue false

A Metal-Alloy Process for the Formation of Oxide Superconducting Films: Advantages, Problems Substrate Interactions, Buffer Layers

Published online by Cambridge University Press:  28 February 2011

M. Gurvitch
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
A. T. Fiory
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
Get access

Abstract

Most thin film processes developed for the formation of the new cuprate superconductors involve admixture of oxygen during film growth, followed by a subsequent anneal in O2 at high temperatures in order to form the correct phase. We completely separated the two processes by first depositing a metallic alloy of YBa2Cu3 by DC magnetron sputtering, taking full advantage of the ease of calibration and high rates of deposition typical of metals, and then performing a second oxidation and annealing step in an Oo furnace. A potential problem of the attack by ambient moisture on the highly reactive metallic alloy was handled by use of thin Y overlayers. We examined substrate interactions of our films and identified several favorable combinations of substrates and protective buffer layers, such as ZrO2 /Ag and MgO/Nb.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laibowitz, R. B., Koch, R. H., Chaudhari, P., and Gambino, R. J., Phys. Rev. B 35, 882 (1987).Google Scholar
2. Naito, M., Hammond, R. H., Oh, B., Hahn, M. R., Hsu, J. W. P., Rosenthal, P., Marshall, A. F., Beasley, M. R., Geballe, T. H., and Kapitulnik, A., J. Mater. Res. 2, 713 (1987).Google Scholar
3. Mankiewich, P. M., Scofield, J. H., Skocpol, W. J., Howard, R. E., Dayem, A. H., and Good, E., Appl. Phys. Lett. 51 (Nov. 23, 1987), in press.Google Scholar
4. Lathrop, D. K., Russek, S. E., and Buhrman, R. A., preprint;Google Scholar
Buhrman, R. A., private communication.Google Scholar
5. Suzuki, M. and Murakami, T., Japn. J. Appl. Phys. 26, L524 (1987).Google Scholar
6. Somekh, R. E., Blamire, M. G., Barber, Z. H., Butler, K., James, J. H., Morris, G. W., Tomlinson, E. J., Schwarzenberger, A. P., Stobbs, W. M., and Evetts, J. E., Nature, in press.Google Scholar
7. Hong, M., Liou, S. H., Kwo, J., and Davidson, B. A., Appl. Phys. Lett. 51, 694 (1987).Google Scholar
8. Gurvitch, M. and Fiory, A. T., Appl. Phys. Lett. 51, 1027 (1987).Google Scholar
9. Tsaur, B.-T., Dilorio, M. S., and Strauss, A. J., Appl. Phys. Lett. 51, 858 (1987).Google Scholar
10. Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-Lee, Y. H., McLean, W. L., and Croft, M., Appl. Phys. Lett. 51, 619 (1987).Google Scholar
11. Rice, C. E., van Dover, R. B., Fisanick, G. J., Appl. Phys. Lett. 51 (Dec, 1987), in press.Google Scholar
12. Kumagai, T., Yokota, H., Kawaguchi, K., Kondo, W., and Mizuta, S., Chem. Lett. 8, 1645 (1987).Google Scholar
13. Gurvitch, M. and Kwo, J., Advances in Cryogenic Engineering 30, edited by Clark, A. F. and Reed, R. P. (Plenum, 1984), p. 509.Google Scholar