Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.615 Render date: 2022-08-07T19:45:22.493Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Metal Coated, fs-Laser Fabricated Silicon Spikes as Electron Emitters for Cold Cathode Applications

Published online by Cambridge University Press:  31 January 2011

Emmanuel Spanakis
Affiliation:
spanakis@materials.uoc.gr, Foundation for Research and Technology Hellas, Institute of Electronic Structure and Lasers, Heraklion, Greece
Marios Barberoglou
Affiliation:
m_bar@iesl.forth.gr, Foundation for Research and Technology Hellas, Institute of Electronic Structure and Lasers, Heraklion, Greece
Panagiotis Tzanetakis
Affiliation:
tzaneta@physics.uoc.gr, Foundation for Research and Technology Hellas, Institute of Electronic Structure and Lasers, Heraklion, Crete, Greece
Costas Fotakis
Affiliation:
fotakis@iesl.forth.gr, Foundation for Research and Technology Hellas, Institute of Electronic Structure and Lasers, Heraklion, Crete, Greece
Get access

Abstract

We have studied the effect of thin metal coatings on the electron emission characteristics of self-assembled silicon microstructures with nearly identical sharp features. We have employed a common template of spikes produced by fs-laser self-driven structuring of Si on which several different metals have been deposited. We find that, in the pristine state and in vacuum conditions achievable in device applications, all metal coatings do not result in marked change of either the minimum electric field necessary for emission or the maximum obtainable current density. In contrast, the durability of the emitters depends strongly on the metal used and is always enhanced with respect to bare Si. Furthermore, no signs of degradation were found within the 3-day time scale of our experiments with gold and chromium. On the contrary, these two metal coatings resulted in emission characteristics improving with time in typical operation conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Temple, D., Mater. Sci. Eng. R. 24, 185 (1999).10.1016/S0927-796X(98)00014-XCrossRefGoogle Scholar
2. Spindt, C. A., Brodie, I., Humphrey, L. and Westerberg, E.R, J. Appl. Phys. 47, 5248 (1976).10.1063/1.322600CrossRefGoogle Scholar
3. Yamamoto, S., Rep. Prog. Phys. 69, 181 (2006).10.1088/0034-4885/69/1/R04CrossRefGoogle Scholar
4. Cui, J.B., Daghlian, C. P., Gibson, U. J., Püsche, R., Geithner, P. and Ley, L., J. Appl. Phys. 97, 044315 (2005).10.1063/1.1854206CrossRefGoogle Scholar
5. Temple, D., Ball, C. A., Palmer, W. D., Yadon, L. N., Vellenga, D., Mancusi, J., McGuire, G. E. and Gray, H.F., J. Vac. Sci. Technol. B 13, 150 (1995).10.1116/1.587973CrossRefGoogle Scholar
6. Sanchez, F., Morenza, J. L., Aguiar, R., Delgado, J. C., and Varela, M., Appl. Phys. A 66, 83 (1998); A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, Appl. Phys. A 69, S731 (1999).Google Scholar
7. Zorba, V., Tzanetakis, P., Fotakis, C., Spanakis, E., Stratakis, E., Papazoglou, D.G., and Zergioti, I., Appl. Phys. Lett. 88, 081103 (2006).10.1063/1.2177653CrossRefGoogle Scholar
8. Barberoglou, M., Zorba, V., Stratakis, E., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H., Fotakis, C., Appl. Surf. Sci. 255, 5425 (2009).10.1016/j.apsusc.2008.07.130CrossRefGoogle Scholar
9. Shen, M.Y., Crouch, C.H., Carey, J.E., Younkin, R., Mazur, E., Sheehy, M., and Frind, C.M., Appl. Phys. Lett. 82, 1715 (2003); S.I. Dolgaev, S.V. Lavrishev, A.A. Lyalin, A.V. Simakin, V.V. Voronov, and G.A. Shafeev, Appl. Phys. A 73, 177 (2001); E. Skantzakis, V. Zorba, D.G. Papazoglou, I. Zergioti, and C. Fotakis, Appl. Surf. Sci. 252, 4462 (2006).10.1063/1.1561162CrossRefGoogle Scholar
10. Ishikawa, J., Tsuji, H., Gotoh, Y., Sasaki, T., Kaneko, T., Nagao, M. and Inoue, K. J. Vac. Sci. Technol. B 11, 403 (1993).10.1116/1.586870CrossRefGoogle Scholar
11. Ding, M., Kim, H., and Akinwande, A. I., Appl. Phys. Lett 75, 823 (1999); S. Kanemaru, T. Hirano, H. Tanoue, and J. Itoh, J. Vac. Sci. Technol. B 14, 1885 (1996).10.1063/1.124525CrossRefGoogle Scholar
12. Johnson, S., Markwitz, A., Rudolphi, M., Baumann, H., Oei, S.P., Teo, K.B.K and Milne, W.I., Appl. Phys. Lett. 85, 3277 (2004).10.1063/1.1804604CrossRefGoogle Scholar
13. Kao, K.C. and Hwang, H., Electrical Transport in Solids (Pergamon, London, 1981) p.150.Google Scholar
14. Endo, Y., Honjo, I. and Goto, S., J. Vac. Sci. Technol. B 16, 3082 (1998).10.1116/1.590495CrossRefGoogle Scholar
15. Wurker, W., Roy, J. and Hesse, J., Mat. Res. Bull. 9, 971 (1974).10.1016/0025-5408(74)90178-0CrossRefGoogle Scholar
16. Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1981) p. 68.Google Scholar
17. Karabutov, A.V., Frolov, V.D., Loubnin, E.N., Simakin, A.V. and Shafeev, G.A., Appl. Phys. A 76, 413 (2003).10.1007/s00339-002-1715-yCrossRefGoogle Scholar
18. Wei, Y., Chalamala, B. R., Smith, B.G., Penn, C.W., J. Vac. Sci. Technol. B 17, 233 (1999).10.1116/1.590544CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Metal Coated, fs-Laser Fabricated Silicon Spikes as Electron Emitters for Cold Cathode Applications
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Metal Coated, fs-Laser Fabricated Silicon Spikes as Electron Emitters for Cold Cathode Applications
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Metal Coated, fs-Laser Fabricated Silicon Spikes as Electron Emitters for Cold Cathode Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *