Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-16T08:23:30.508Z Has data issue: false hasContentIssue false

Mechanism of Ion-Induced Solid-Phase Crystallization and Amorphization

Published online by Cambridge University Press:  25 February 2011

T.k. chaki*
Affiliation:
State University of New York, Department of Mechanical and Aerospace Engineering, Buffalo, NY 14260
Get access

Abstract

A mechanism is proposed to explain ion-induced solid-phase epitaxial growth (SPEG). It is argued that radiation-enhanced diffusion in amorphous solid is the cause of ion-induced SPEG at relatively low temperatures. The atoms in the amorphous solid near the crystalline/amorphous interface adjust their positions to lattice sites due to a free energy decrease associated with the transformation from amorphous to crystalline solid. An expression for the velocity of ion-induced SPEG is derived. At low temperatures and high irradiation dose rates, a large number of atoms in the lattice gets displaced and the free energy of the crystalline solid can increase to such a value that the crystalline/amorphous interface may remain stationary. It is shown that the dose rate at which the interface remains stationary increases with the temperature, following an Arrhenius dependence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Csepregi, L., Kennedy, E.F., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys., 49, 3906 (1978).Google Scholar
2 Csepregi, L., Kullen, R.P., Mayer, J.W., and Sigmon, T.W., Solid State Commun., 21, 1019 (1977).Google Scholar
3 Nakata, J. and Kajiyama, K., Appl. Phys. Lett, 40, 686 (1982).Google Scholar
4 Linnros, J., Svensson, B., and Holme'n, G. Phys. Rev.B, 30, 3629 (1984).Google Scholar
5 Linnros, J., Holmen, G., and Svensson, B., Phys. Rev.B, 32, 2770 (1985).Google Scholar
6 Williams, J.S., Elliman, R.G., Brown, W.L., and Seidel, T.E., Phys. Rev. Lett, 55, 1482 (1985).Google Scholar
7 Holmen, G., Peterstrom, S., Buren, A., and Bogh, E., Radiât. Eff., 24, 45 (1975).Google Scholar
8 Johnson, S.T., Williams, J.S., Nygren, E., and Elliman, R.G., J. Appl. Phys., 64, 6567 (1988).Google Scholar
9 Linnros, J., Elliman, R.G., and Brown, W.L., J. Mater. Res., 3, 1208 (1988).Google Scholar
10 Brown, W.L., Elliman, R.G., Knoell, R.V., Leiberich, A., Linnros, J., Maher, D.M., and Williams, J.S., in Microscopy of Semiconducting Materais edited by Cullis, A.G. and Augustus, P.D. (Institute of Physics London 1987), p.61.Google Scholar
11 K.A. Jackson, J. Mater. Res., 3, 1218 (1988).Google Scholar
12 Chaki, T.K., Phil. Mag. Lett, 52, 223 (1989).Google Scholar
13 Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processing-1978, edited by Ferris, S.D. Leamy, H.J. and Poate, J.M. (American Institute of Physics, New York, 1979), p.73.Google Scholar
14 Gupta, D., Tu, K.N., and Asai, K.W., Phys. Rev. Lett, 35, 796 (1975).Google Scholar
15 Ahmadzaheh, M. and Cantor, B., J. Non-crystalline Solids, 43, 189 (1981).Google Scholar
16 Tu, K.N. and Chou, T.C., Phys. Rev. Lett, 61, 1863 (1988).Google Scholar
17 Hahn, H. and Averback, R.S., Phys. Rev.B, 21, 6533 (1988).Google Scholar
18 Chaki, T.K. and Li, J.C.M., Phil. Mag.B, 51, 557 (1985).Google Scholar
19 Bϕttiger, J., Pampus, K., and Torp, B., Europhys. Lett, 4, 915 (1987).Google Scholar
20 Priolo, F., Poate, J.M., Jacobson, D.C., Linnros, J., Batstone, J.L., and Campisano, S.U., Appl. Phys. Lett, 52, 1213 (1988).Google Scholar
21 Ding, F., Averback, R.S., and Hahn, H., J. Appl. Phys., 64, 1785 (1988).Google Scholar
22 Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M., and Jacob-son, D.C., Appl. Phys. Lett, 42, 698 (1983).Google Scholar
23 Sharma, S.K., Kuldeep, , and Jain, A.K., Mater. Sci. Engng., 100. 145 (1988).Google Scholar
24 Kinchin, G.H. and Pease, R.S., Rept Prog. Phys., 18, 1 (1955).Google Scholar